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Fourier transforms
•This is intended to be a practical exposition, not fully mathematically rigorous

ref The Fourier Transform and its Applications  R. Bracewell (McGraw Hill)

•Definition
F(ω) = ∫ -∞

∞ f(t).e-jωt.dt ω = 2πf

f(t) = ∫ -∞
∞ F(ω).ejωt.df = (1/2π)∫ -∞

∞ F(ω).ejωt.dω

•Conventions
f:   function to be transformed
F:   Fourier transform of f   F =  FT[f]
so inverse transform is         f = FT-1[F]

should know these !

other definitions exist

there will be a few exceptions 
to upper/lower case rule
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•widely used in many branches of science
some problems solved more easily by a transform to another domain

eg algebra just becomes simpler but sometimes understanding too..
in instruments decomposition of signals in the time domain into frequency,

and vice versa,  is a valuable tool

•this will be the main interest here (ie t & f)

•Both time development f(t) and spectral density F(ω) are observables

•Should note that not all functions have FT
Formally, require
(i) ∫ -∞

∞ f(t).e-jωt.dt  < ∞
(ii) f(t) has finite maxima and minima within any finite interval
(iii) f(t) has finite number of discontinuities within any finite interval

What is the importance?
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Impulse
•A common signal in physics is an impulse - a la Dirac

ie δ(t-t0) = 0     t ≠ t0

∫ -∞
∞δ(t-t0) = 1   or  if range of integration includes t0

•Such a definition is comparable to many detector signals
eg.   a scintillation detector measures ionisation of a cosmic ray particle

a pulse from a photomultiplier converts light into electrical signal
the signal is fast (very short duration, typically ~ns)
the total charge in the pulse is fixed

other examples: fast laser pulse, most ionisation

even if the signal is not a “genuine” impulse, it can be considered as a sum of many
consecutive impulses
or the subsequent processing may be long in comparison with the signal duration for
the approximation to be valid
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FT of impulse
•F(ω) = ∫ -∞

∞ δ(t).e-jωt.dt = 1
ie an impulse contains a uniform mixture of all frequencies

an important general comment is that short duration pulses have a wide range of
frequencies, as do pulses with fast edges (like steps).  Real instruments do not
support infinite frequency ranges.

•Note on inverting FTs
f(t) = ∫ -∞

∞ F(ω).ejωt.df
= (1/2π)∫ -∞

∞ F(ω). ejωt.dω

Many inversions are straightforward integrations
others need care

eg inverse of δ function     (1/2π)∫ -∞
∞ 1. ejωt.dω

= (1/2π)[ejωt/jt ]-∞
∞    ???

often simpler to recognise the function from experience   (practice!) 
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Some theorems
F(ω) = FT[f(t)] = ∫ -∞

∞ f(t).e-jωt.dt

•Linearity FT[a.f(t)+b.g(t)] = a.F(ω) + b.G(ω)

•Translation in time  (Shift theorem)
FT[f(t+t0)] = ∫ -∞

∞ f(t+t0).e-jωt.dt
= ∫ -∞

∞ f(u).e-jω(u-t
0

).du
= ejωt

0∫ -∞
∞ f(u).e-jωu.du

= ejωt
0 F(ω)

•Similarity   - scale by factor a > 0
FT[f(at)] = ∫ -∞

∞ f(at).e-jωt.dt = ∫ -∞
∞ f(u).e-jωu/a.du/a = ∫ -∞

∞ f(u).e-j(ω/a)u.du/a
= (1/|a|)F(ω/a)

•Modulation
FT[f(t)cosαt] = (1/2)∫ -∞

∞ f(t).[ejαt + e-jαt]. e-jωtdt
= (1/2){∫ -∞

∞ f(t).e-j(ω-α)t.dt +∫ -∞
∞ f(t).e-j(ω+α)t.dt}

= (1/2){F(ω-α) + F(ω+α)} 

compression of time
 scale= expansion of 
frequency scale

different frequency 
components of waveform 
suffer different phase 
shifts to maintain pulse shape
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and tricks
•sometimes the symmetry can be exploited to ease calculation

F(ω) = ∫ -∞
∞ f(t).e-jωt.dt 2πf(t) = ∫ -∞

∞ F(ω).ejωt.dω FT pair

interchange  and t  =>   2πf(ω) = ∫ -∞
∞ F(t).ejωt.dt

so ∫ -∞
∞ F(t).e-jωt.dt = 2πf(-ω)

example

   FT[δ(t)] = 1   so  FT[1] = 2πδ(-ω) = 2πδ(ω)

•We will very often be dealing with real functions in time

ie. f(t) = Re[f(t)] + j Im[f(t)]  = Re[f(t)]

so complex conjugate f*(t) = f(t)

then F(-ω) = F*(ω)
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(1)  f(t) = 0 t < 0
   = e-at t ≥ 0

(2) f(t) = e-a|t|

(3)  f(t)= 0 t < 0
   = 1 t ≥ 0

rewrite  as   limit a->0 (1/2)[1 +  e-at [t≥0] -eat [t<0]]

Some examples (i)

F(ω) = limit a->0 (1/2)[2πδ(ω) +  1/(jω+a) + 1/(jω-a)]

        = πδ(ω) + 1/jω

        = 1/jω   ω > 0

F(ω) = ∫ 0
∞ e-at.e-jωt.dt =∫ 0

∞ e-(jω+a)t.dt = 1/(jω+a)

F(ω) = ∫ -∞
0 eat.e-jωt.dt +∫ 0

∞ e-at.e-jωt.dt 
 
=-1/(jω-a) +1/(jω+a)  = 2a/(ω2+a2)

-1

0

1

0.00

this function is
often called H(t)
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(4)  f(t) = 0 t < 0
   = 1-e-at t ≥ 0

(5)  f(t) = 0 t < 0
   = ate-at t ≥ 0

(6)  f(t) = exp(-a2t2)

(7)  top-hat function   Π(t)
f(t) = 1    -a < t ≤ a
      = 0   elsewhere 

Some examples (ii)

F(ω) = a/[jω(jω+a)] ω > 0

F(ω) = a/(jω+a)2

F(ω) = (√π/a)exp(-ω2/4a2)

F(ω) = 2sin(ωa)/ω
-a a
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Fourier pairs
•top hat function

-a a

F(ω) = 2sin(ωa)/ω

what value does a have?
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Bandpass filter
•Low pass + high pass filters

equal time constants
are often chosen
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Integrator + Bandpass filter
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•Commonly encountered pulse shape in amplifier systems
integrator response = 1/jωC

τ = 1µs

F(ω) = A/(1+jωτ)2
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FT[f’(t)] = ∫ -∞
∞ f’(t).e-jωt.dt

=∫ -∞
∞lim[ f(t+∆t)-f(t)].e -jωt.dt

       ∆t

= ∫ -∞
∞lim[ f(t+∆t)]e -jωt.dt - ∫ -∞

∞lim[ f(t)].e-jωt.dt
    ∆t    ∆t

= lim[ejω∆t
 F(ω) -F(ω)] = jωF(ω) 

∆t

FT[∫ -∞
tf(t)dt] = ∫ -∞

∞ {∫ -∞
tf(u)du.}e-jωt.dt          let ∫ -∞

tf(u)du = g(t)

∫ -∞
∞ {∫ -∞

tf(u)du.}e-jωt.dt = ∫ -∞
∞ g(t)e-jωt.dt

= [g(t) e-jωt/(-jω)] -∞
∞  + (1/jω) ∫ -∞

∞ g’(t)e-jωt.dt

= F(ω)/jω

Differentiation and integration

limit at ∆t -> 0

use Shift theorem 

Formally, subject to constraints on g(±∞)
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Fourier transforms of repetitive functions
•typically give line spectra, instead of continuous

ie series of discrete frequency components dominate
obvious for sin( 0t) and combinations

•Recall Modulation theorem
FT[f(t)cosω0t] = (1/2){F(ω-ω0) + F(ω+ω0)}

so f(t) = 1 F(ω) = 2πδ(ω)
FT[cosω0t] = (1/2){δ(ω-ω0) + δ(ω+ω0)}

single freqency component at ω= ω0  (and -ω = ω0)

FT[cos(ω0t)cos(ω1t)] =
(1/4){δ(ω-ω0 -ω1) + δ(ω-ω0 +ω1) + δ(ω+ω0 -ω1)+ δ(ω+ω0 +ω1)}

components at ω= ω0 -ω1 and  ω= ω0 +ω1 (and -ω =  ...)

•What is the meaning of negative frequencies?
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Negative frequencies
•Can consider them as a formal mathematical consequence of the Fourier integral
which has an elegant symmetry

but doesn’t interfere with practical applications
We are always concerned with functions which are real

since measured quantities must be

For real functions F(-ω) = F*(ω)
and we always encounter combinations like  ∫ -∞

∞F(ω) ejωtdω

∫ -∞
∞F(ω) ejωtdω = ∫ -∞

0F(ω) ejωtdω + ∫ 0
∞F(ω) ejωtdω

    = ∫ ∞
0 -F(−υ) e-jυtdυ + ∫ 0

∞F(ω) ejωtdω

    = ∫ 0
∞F*(ω) e-jωtdω + ∫ 0

∞F(ω) ejωtdω

if F(ω) = F0ejθ

  then  F*(ω) e-jωt+ F(ω) ejωt  = F0[e-j(ωt+θ)+ ej(ωt+θ)]

so  ∫ -∞
∞F(ω) ejωtdω = 2∫ 0

∞F0cos(ωt+θ) dω purely real integral
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Sequence of pulses
•General case

g(t) = ∑n=-∞
∞f(t+n∆t)

…  f(t+2∆t) + f(t+∆t) + f(t) + f(t-∆t) + f(t-2∆t)  + … f(t-n∆t) + …

from Shift theorem

G(ω) = F (ω) ∑n=-∞
∞ejωn∆t  = F (ω) [1+ ∑n=1

∞2cos(ωn∆t)]

 ∑n=-∞
∞ejωn∆t  =  ∑n=-∞

∞ejΘ = ∑n=0
∞ejΘ  + ∑n=0

∞e-jΘ  - 1

Geometric series S = 1 + x + x2 + x3 +…xn +… = 1/(1-x)

 ∑n=-∞
∞ejΘ  = 1/(1- ejθ) + 1/(1- e-jθ) - 1  = 1

so     G(ω) = F (ω)

frequency content unchanged - as seems logical

but normally can’t observe waveform for infinite time

If f(t) is truly
periodic
 ie duration < ∆t

we'll later find it
more convenient to
work with Fourier
series

exploit the natural
harmonics of the
system
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Real sequences
•If observe for a duration T, the lowest freqency which can be observed is ~1/T

ie partial cycles should be included with random phase and would be expected not
to contribute

•so convolute periodic waveform with top-hat duration T to make it finite
g(t) = ∑n=-∞

∞f(t+n∆t) * Π(t,T)

G(ω) = F (ω).2sin(ωT/2)/ω

this has peaks at     ωT/2 = (π/2)(2k+1)   k = 1, 2, 3,…

ie multiples of ω0= (π/T)(2k+1)

•Train of rectangular pulses, duration a
G(ω) = [2sin(ωa/2)/ω]. [2sin(ωT/2)/ω]

= (4/ω2)sin(ωa/2).sin(ωT/2)
will return to
this later
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Impulse response and convolution
•generalised multiplication

if a signal f(t) is the input to a system, what is the outcome?
We know the response of the system to an impulse is h(t) …

ie. impulse at t= 0  gives  output h(t) at t

Consider signal as made of series of impulses with weight f(t)

NB integral extends to  -∞ < t’ < t  only
results can’t be influenced by times later than measurement
however general convolution does not have this restriction

h(t’)f(t’)

t’

t-t’
t’=tt’=t1’

contribution at t from signal at t1’

=  f(t1’).h(t-t1’).dt’

dt’

then  g(t) = ∫ -∞
t f(t’).h(t-t’).dt’
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Convolution theorem
h(t) = 0 for t < 0 simple statement of causality
so can extend upper limit of integral to t’ = ∞ without problem, and

Th
(not all functions have this causal constraint so integration to ∞ is normal)

Let’s find F. Transform (change t’ to u to avoid confusion)

G(ω) = FT[∫ -∞
∞ f(u).h(t-u).du ]  = ∫ -∞

∞ ∫ -∞
∞ f(u).h(t-u).du.e-jωtdt

= ∫ -∞
∞  f(u) {∫ -∞

∞h(t-u).e-jωtdt} .du
= ∫ -∞

∞  f(u) e-jωu H(ω) .du
= F(ω)H(ω)

Convolution = f(t)*g(t) = multiplication of FTs

•NB because f <==> FT is symmetric, there is a similar result for F(ω)*G(ω)

g(t) = ∫ -∞
t f(t’).h(t-t’).dt’ = ∫ -∞

∞ f(t’).h(t-t’).dt’ 
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Digression
•It's an interesting fact that complex exponentials are eigenfunctions of a Linear Time
Invariant (LTI) system. To see this

to get this, we assumed the system was linear and time invariant

put f(t) = ejωt

g(t) = ∫ -∞
∞ h(u)ejωte-jωudu

= ejωt∫ -∞
∞  h(u).e-jωudu

= H(ω) ejωt

•This is another argument for the use of such signals in analysing systems

g(t) = ∫ -∞
∞ f(u).h(t-u).du = ∫ -∞

∞ h(u).f(t-u).du 
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•need this result

if  G(ω) = ∫ -∞
∞g(t).e-jωt.dt

then     G*(ω) = ∫ -∞
∞g*(t).ejωt.dt

•wish to find ∫ -∞
∞ f(t).g*(t).dt

∫ -∞
∞ f(t).g*(t).dt = (1/2π)∫ -∞

∞ ∫ -∞
∞ F(ω).g*(t).ejωtdω.dt

= (1/2π)∫ -∞
∞ F(ω) {∫ -∞

∞g*(t).ejωtdt} . dω

= (1/2π)∫ -∞
∞ F(ω)G*(ω)dω

= ∫ -∞
∞ F(ω)G*(ω) df

Special case when  g*(t) = f*(t)

∫ -∞
∞ |f(t)|2.dt = ∫ -∞

∞ |F(ω)|2df

Parseval’s (Rayleigh’s) & Power theorems
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Impulse response and transfer function relationship

•Signal processing system , eg. Amplifier

output = convolution of signal and impulse response in time domain

ie  g(t) = f(t)*h(t)

and from convolution theorem

G(ω) = F(ω)H(ω)

where  G(ω) = FT[g(t)]

but we already know that the spectral content at the output is the product of the
spectral content of the signal and the transfer functions

so the transfer function and impulse response are a Fourier transform pair

 F(ω)  G(ω) = H(ω)F(ω)
 H(ω)

f(t)  g(t)
 h(t)
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Bandwidth and duration
•Equivalent area

F(ω) = ∫ -∞
∞ f(t).e-jωt.dt  so  F(0) = ∫ -∞

∞ f(t) dt   = area under f(t)
and similarly          f(0) = ∫ -∞

∞ F(ω) df

define equivalent area  = area under curve/height at [t/ω =] 0

thus      ∫ -∞
∞ f(t) dt    = F(0)

f(0)       ∫ -∞
∞ F(ω) df

ie. reciprocal relation between equivalent area in time and frequency
increase width of one, other decreases
examples δ(t)  <->  1

Π(t) <->  2sin(ωa)/ω

     exp(-a2t2) <-> (√π/a)exp(-ω2/4a2)

•Bandwidth x duration = constant
mathematical consequence of interrelation of f and t

convince yourself
this is true
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Uncertainty principle
•Define (∆t) 2 and (∆ ω)2 as variances in t and ω

<x>  = ∫x.p(x).dx <x2>  = ∫x 2.p(x).dx    etc
there is more than one possible way of calculating these values

choose appropriate probability distribution p(x)      [NB ∫p(x).dx = 1]
the choice could be f(t) or F( ) but

a useful choice with much practical  value is
p(t) = ff*   or p(ω) = FF*     (properly normalised)

then variance is calculated by weighting with Power (Intensity) spectrum

•    (∆t) 2 = ∫ -∞
∞ t2.|f(t)|2.dt (∆ ω)2 = ∫ -∞

∞ ω2.|F(ω)|2.df
       ∫ -∞

∞ |f(t)|2.dt   ∫ -∞
∞|F(ω)|2.df

can be shown in very general way that  ∆t. ∆ ω  ≥ 1/2 or  ∆t. ∆ ν  ≥ 1/4π

which is often known as the Bandwidth Theorem

a pulse is said to be transform limited if it contains the minimum number
frequencies sufficient to support the pulse shape

it is possible to have more frequencies in pulses, satisfying t. > 1/2
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Small footnote
•Should be well known but...

•mean and σ calculated from probability distribution p(x)

∫p(x) dx = 1

<x>  = ∫x.p(x). dx
<x2>  = ∫x 2.p(x).dx
σ2 = <x2> - <x>2

σ2 = <x2>  only when  <x> = 0

so for symmetric distributions like gaussian   σ2= <x2>
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Gaussian pulses and uncertainty
•Gaussian pulses transform to gaussian pulses

f(t) = exp(-a2t2) F(ω) = (√π/a)exp(-ω2/4a2)
in optics, laser spatial profiles are often chosen to be gaussian

•The general form of gaussian probability distribution
p(x) = [1/(2πσ1/2)]exp{-(x-x0)2/2σ2}
mean = x0 variance = σ2     ∫ -∞

∞p(x)dx = 1

When evaluating σt and σω remember that the appropriate gaussian distributions
apply to power and not amplitude. In quantum mechanics the probability p(x) =
|ψ(x)|2 so the results are identical.

Can show that gaussian pulses satisfy this bound exactly.
σt. σω  = 1/2 (on problem sheet)

In optics experiments, this could be used as a useful reality check on a super-fast
optical pulse experimental measuring both σt and σω

Most (all?) other pulse shapes have σt. σω  >  1/2
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Ultimate bandwidth limitation
•In optical systems often assume that transmitter is very broad-band source

ie spectral linewidth large compared to modulation bandwidth of signal
constant pressure to push to the limits for many applications

gives an interesting example of ...

•Ultimate limit from Fourier transform & uncertainty principle
the shorter the pulse, the broader the spectrum

more rapidly degraded by chromatic dispersion

•A communications system wants to send pulses long distances by optical fibre
a gaussian pulse shape is chosen
the initial spread in the pulse is σ0(t)
after a distance length L, at wavelength λ
the result of dispersion is a broadening of the pulse

σ2(t) = σ0
2 + σD

2 = σ0
2 + Dm

2σλ
2L2

•what is the best value of σ(t) and the speed of optical transmission?
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• σ2(t) = σ0
2 + σD

2 = σ0
2 + Dm

2σλ
2L2

single mode fibre
and λ = 1550nm
L = 100km

measured dispersion Dm = 15ps/km.nm
 different spectral components travel at slightly different speeds

σλ
2 = 4π2c2σω

2/ω4 = σω
2λ4/4π2c2 = λ4/16π2c2σ0

2

since σt = 1/2σω  for gaussian
σ2 = σ0

2 + Dm
2σλ

2L2  =  σ0
2 + A2/σ0

2 A = DmLλ2/4πc

Minimum is when σ0
4 = A2   so       σ2 = 2σ0

2

σmin =  λ(DmL/2πc)1/2  = 44 ps
ie. starting with shorter pulse will lead to more dispersion and longer pulse at
receiver

•Data transmission rate?

Dispersion and bandwidth
original pulse

pulse after long
distance in fibre

t
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Maximum bit rate
•How closely separated can two pulses be in time?

envelope is
f(t) =  exp{-t2/2σ2} + exp{-(t-t0)2/2σ2}
could find general solution by minimising

complicated!

but usually a minimum at t = t0/2
f(t0/2) = 2exp{-t0

2/8σ2}
while f(0) = f(t0) is usually a maximum

f(0) = 1 + exp{-t0
2/2σ2}

•good separation at t0 ≈ 4σ
so maximum bit rate
is  ≈ 1/4σ ≈ 5.7 Gb/s

•I’ve considered amplitudes - should consider power?
•Could we do better with any other pulse shape?

t0

tt= 0

t0 f(0) =
1+exp(-t0

2/2σ2)
f(t0/2) =
2exp(-t0

2/8σ2)

σ 1.61 1.77
2σ 1.14 1.21
3σ 1.01 0.65
4σ 1.00 0.27
5σ 1.00 0.09
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Power spectral density
•Many functions we are dealing with represent

f(t)  = voltage or current
f(t)  = amplitude (eg of light pulse)

•In such cases, the total energy or intensity is

∆E =  ∫ t1
t2|f(t)|2dt energy delivered in interval t1 < t ≤ t2

or, in frequency interval,

∆E =  ∫ f1
f2|F(ω)|2df energy in range  f1 < f ≤ f2

with an appropriate factor of R, for V & I

•Power spectral density    W(ω) =  |F(ω)|2

remembering the integration is in f, not ω
otherwise need a (1/2 ) factor
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Bandpass filters
•We will encounter many systems where we are interested in estimating the bandwidth

ie the range of frequencies transmitted by the system

In ideal cases we would often like to simplify this by assuming that all frequencies in
a range are transmitted without attenuation

ie H(ω) = 1     for    ω1 < ω < ω2

We can now see that this simple picture is physically impossible to realise since it
would  imply

infinite range of frequencies
an impulse response of  h(t) ≈  e-j(ω1+ω2)t. [2sin(ω1+ω2)t/2]/πt

(Symmetry and shift theorems)
complex and oscillatory  -  not practical to realise
however, this does not stop us using the concept

nor defining effective bandwidth

ω1 ω2


