- Once again a practicalexposition, not fully mathematically rigorous
- Definition
$\mathcal{F}(s)=\int_{0}{ }^{\infty} f(t) \cdot e^{-s t} \cdot d t \quad \mathcal{N}(\mathcal{B}$ lower limit of integral $=0 \quad$ unilateral $\mathcal{L T}$
more rigorously $\mathcal{F}(s)=\int_{0_{+}}^{\infty} f(t) \cdot e^{-s t} \cdot d t={ }_{\text {immit }_{\mathrm{h} \rightarrow 0}} \int_{|k|^{\infty}} f(t) \cdot e^{-s t} \cdot d t$
[Another variant exists $\mathcal{F}(s)=\int_{-\infty}^{\infty} f(t) . e^{-s t}$.dt bilateral LIT]
Unilateral LI convenient for systems where nothing happens before $t=0$
the inverse Laplace transform is much more complicated mathematically than the Fourier transform,
$f(t)=(1 / 2 \pi j) \int_{c \cdot j \infty}{ }^{c+j \infty} \mathcal{F}(s) \cdot e^{s t} \cdot d s \quad j=\sqrt{ }-1$
Cauchy principal value of integral in comple x plane
\mathcal{H} owever, this is not generally required in most practicalcases. There are many problems where inverse transforms can be found by inspection.
- as for Fourier
f : function to be transformed
$\mathcal{F}:$ Laplace transform of $f \mathcal{F}=\mathcal{L I}[f]$ and inverse $f=\mathcal{L I}^{-1}[\mathcal{F}]$

Unless specifically stated all functions $f(t)$ are assumed to take the value

$$
f(t)=0 \quad t<0
$$

not a realconstraint for practical problems
Formally, this can always be achieved for any function by multiplying by unit step function $u(t)$

- Why use the Laplace transform instead of Fourier?
particularly suited for transient problems
some functions don't converge
Fourier response is an integral
sometimes Laplace vs Fourier is just preference

The meaning of s

- In Fourier transforms the complementary variable usually fas a clear physical meaning,
eg if working in time $t \Leftrightarrow \omega \omega$ or f
diffraction in optics, where $\mathcal{F T}$ s are used, has a similar relationsfip betwe en spatial distributions and spatialfreqency
- Although Laplace transforms look very similar (and many results can be easily obtained by following methods for deriving $\mathcal{F T}$ s), the complementary variable s does not fave the same prysical significance.

It is a mathematical method of solving problems using transforms

- Since we spent a significant time on the $\mathcal{F T}$, I will not spend so much time on the details of deriving LIS
integrals are usually straightforward
I will discuss only transforms we will need here
- Linearity $\quad \mathcal{L T}[a . f(t)+\sigma \cdot g(t)]=a \cdot \mathcal{F}(s)+\sigma \cdot \mathcal{G}(s)$
-S rifting in time

$$
\mathcal{L T}[f(t-\Delta t)]=\int_{0}^{\infty} f(t-\Delta t) \cdot e^{-s t} \cdot d t=e^{-s \Delta t} \mathcal{F}(s)
$$

- Iranslation in s

$$
\mathcal{L I}\left[f(t) e^{-a t}\right]=\int_{0}^{\infty} f(t) e^{-a t} e^{-s t} d t=\mathcal{F}(s+a)
$$

- Convolution

$$
\mathcal{L I}\left[\chi(t)^{*} y(t)\right]=X(s) \mathcal{Y}(s)
$$

- Differentiation

$$
\begin{aligned}
& f^{\prime}(t)=d / d t\left\{(1 / 2 \pi j) \int_{c \cdot j \infty}{ }^{c+j \infty} \mathcal{F}(s) \cdot e^{s t} \cdot d s\right\}=\left\{(1 / 2 \pi j) \int_{c \cdot j \infty}{ }^{c+j \infty} s \mathcal{F}(s) \cdot e^{s t} \cdot d s\right\} \\
& \mathcal{L I}\left[f^{\prime}(t)\right]=s \mathcal{F}(s)
\end{aligned}
$$

- Integration

```
\(\int_{0}^{t} f(t) d t=\int_{0}^{t}\left\{(1 / 2 \pi j) \int_{c \cdot j \infty}{ }^{c+j \infty} \mathcal{F}(s) \cdot e^{s t} \cdot d s\right\} d t\)
    \(\left.=\{(1 / 2 \pi j)]_{c \cdot j \infty}{ }^{c+j \infty}(1 / s) \mathcal{F}(s) \cdot e^{s t} \cdot d s\right\}\)
    \(\mathcal{L I}\left[\int_{0}{ }^{t} f(t) d t\right]=\mathcal{F}(s) / s\)
```

these are results to be remembered (or derived)
(1) $f(t)=e^{-a t} \quad t \geq 0$
$\mathcal{F}(s)=\int_{0}^{\infty} e^{-a t} \cdot e^{-s t} \cdot d t=\int 0_{0}^{\infty} e^{-(s+a) t} \cdot d t=1 /(s+a)$
(2) $f(t)=u(t)=1 t \geq 0 \quad \mathcal{F}(s)=\frac{1}{s}$

(3) $f(t)=\delta\left(t-t_{0}\right)$
$\mathcal{F}(s)=\int_{0}^{\infty} \delta\left(t-t_{0}\right) \cdot e^{-s t} \cdot d t=e^{-s t} \quad \mathcal{D}[\delta(t)]=1$
(4) $f(t)=\delta^{\prime}\left(t-t_{0}\right)$
$\mathcal{F}(s)=s e^{-s t}{ }_{0}$ $\mathcal{L T}[\delta(t)]=s$
(5) $f(t)=1 \cdot e^{-a t}$

$$
\mathcal{F}(s)=\frac{a}{s(s+a)}
$$

$$
\mathcal{F}(s)=\frac{a}{(s+a)^{2}}
$$

$$
\mathcal{F}(s)=\frac{n!}{(s+a)^{n+1}}
$$

(8) $\Pi(t)$
$\mathcal{F}(s)=2 \operatorname{sinf}(s a) / s$

Problem solving with $\mathcal{L T}$
-Inductor - resistor circuit

$$
\begin{gathered}
v_{\text {out }}(t)=i(t) \mathcal{R} \quad \mathcal{L} \frac{d i}{d t}(t)+\mathcal{R i}(t)=v_{i n}(t) \\
\frac{L}{\mathcal{R}} \frac{d v_{o u t}}{d t}(t)+v_{\text {out }}(t)=v_{\text {in }}(t)
\end{gathered}
$$

- Take Laplace trans form

$$
\frac{\mathcal{L}}{\mathcal{R}} s \mathcal{V}_{o u t}(s)+\mathcal{V}_{o u t}(s)=\mathcal{V}_{i n}(s)
$$

-solution

$$
\frac{\mathcal{V}_{o u t}(s)}{\mathcal{V}_{\text {in }}(s)}=\frac{1}{\frac{s \mathcal{L}}{\mathcal{R}}+1}=\frac{a}{s+a} \quad a=\mathcal{R} / \mathcal{L}
$$

- Example

$$
\begin{aligned}
& v_{i n}(t)=u(t)=\text { unit ste } p \quad \mathcal{V}_{\text {in }}(s)=\frac{1}{s} \quad \mathcal{V}_{\text {out }}(s)=\frac{a}{s(s+a)} \\
& \mathcal{L T} \text { of } 1-e^{-a t}=v_{\text {out }}(t)
\end{aligned}
$$

Solution of differential equations

- Solve $\quad \frac{d y(t)}{d t}+a y(t)=6 x(t)$ where $x(t)=$ input $y(t)=$ output
-rewrite as $y(t)=-\frac{1}{a} \frac{d y(t)}{d t}+\frac{b}{a} x(t) \quad$ and $\quad y(s)=-\frac{1}{a} s y(s)+\frac{b}{a} x(s)$
-system blockdiagram

-alternatively

$$
y(t)=\int_{0}^{t}[b x(u)-a y(u)] d u
$$

- if $x(t)$ is Known, full solution to system response can be found
-(i) derive system transfer function

$$
\begin{array}{r}
\mathcal{Y}=\mathcal{G}_{0} X-3 \mathcal{G}_{1} \mathcal{Y}+7 \mathcal{G}_{1} \mathcal{G}_{2} \mathcal{Y} \\
\mathscr{Y}(s)=\frac{\mathcal{G}_{0} X(s)}{1+3 \mathcal{G}_{1}-7 \mathcal{G}_{1} \mathcal{G}_{2}}
\end{array}
$$

-(ii) G_{0} fas time domain response $24 t e^{-2 t}$

$$
\mathcal{G}_{1} \text { is unity gain differentiator }
$$

\mathcal{G}_{2} is unity gain integrator

$\mathcal{G}_{0}(s)=\frac{24}{(s+2)^{2}} \quad \mathcal{G}_{1}(s)=s \quad \mathcal{G}_{2}(s)=\frac{1}{s}$

$$
\mathcal{Y}(s)=\frac{24 X(s)}{(s+2)^{2}(1+3 s-7)}=\frac{8 X(s)}{(s+2)^{2}(s-2)}
$$

-(iii) Is system stable to small perturbations?
-(iv) Find time domain response to stepu(t), for $t>0$

$$
\mathcal{Y}(s)=\frac{8 X(s)}{(s+2)^{2}(s-2)}
$$

- System fias 2 poles: points where $\mathcal{Y}(s)->\infty$

$$
\text { at } s=+2 \text { and } s=-2
$$

- If all poles are in region where $s<0$, system is stable in Fourier language $s=j \omega$

can only have positive frequencies, ie $s>0$
so this system is unstable
will see why from solution
- Pole locations could have imaginary part stable =>oscillatory solution

$$
\begin{aligned}
& \text { •x }(t)=u(t)=1, \text { for } t>0 \text { so } x(s)=1 / s \\
& \mathscr{Y}(s)=\frac{8 X(s)}{(s+2)^{2}(s-2)}=\frac{8}{s(s+2)^{2}(s-2)} \quad=\frac{\mathcal{A}}{s}+\frac{\mathcal{B}}{(s+2)}+\frac{\mathcal{C}}{(s+2)^{2}}+\frac{\mathcal{D}}{(s-2)}
\end{aligned}
$$

Solve by expressing as partial fractions

- Find $\mathcal{A}, \mathcal{C}, \mathcal{D}$ by taking limit $s \rightarrow$ of $(s+a) \mathcal{N}(s) \quad \mathcal{N}$ is fighest power term
- Find \mathcal{A} by multiplying bys

$$
\begin{array}{lll}
\mathcal{R H S} & \underbrace{\text { Limit }}_{s->0} \ldots s \mathcal{Y}(s)=\mathcal{A}+\frac{\mathcal{B s}}{(s+2)}+\frac{\mathcal{C s}}{(s+2)^{2}}+\frac{\mathcal{D s}}{(s-2)}=\mathcal{A} \\
\mathcal{L H S} & \underbrace{\text { Limit }}_{s->0} \ldots s \mathcal{Y}(s)=\frac{8}{(s+2)^{2}(s-2)}=\frac{\mathcal{A}}{4(-2)}=-1
\end{array}
$$

- Find C by multiplying by $(s+2)^{2}$

$$
\mathcal{R H S} \quad \underbrace{\text { imit }}_{s->-2} \ldots(s+2)^{2} \mathscr{Y}(s)=\mathcal{A}(s+2)^{2}+\mathcal{B}(s+2)+\mathcal{C}+\frac{\mathcal{D}(s+2)^{2}}{(s-2)}=c \quad \mathcal{C}=1
$$

$$
\operatorname{LHS} \quad \underbrace{\text { imit }}_{s->-2} \ldots(s+2)^{2} \mathcal{Y}(s)=\frac{8}{s(s-2)}=\frac{8}{(-2)(-4)}=1 \quad \text { similarly } \mathcal{D}=1 / 4
$$

$$
\mathcal{Y}(s)=\frac{\mathcal{B X}(s)}{(s+2)^{2}(s-2)}=\frac{8}{s(s+2)^{2}(s-2)} \quad=\frac{\mathcal{A}}{s}+\frac{\mathcal{B}}{(s+2)}+\frac{\mathcal{C}}{(s+2)^{2}}+\frac{\mathcal{D}}{(s-2)}
$$

- Find \mathcal{B} by multiplying by $(s+2)^{2}$, differentiate, then take limit

RHS

$$
\frac{d}{d s}(s+2)^{2} \mathscr{y}(s)=\frac{d}{d s}\left[\frac{8}{s(s-2)}\right]=8\left\lfloor\frac{-1}{s^{2}(s-2)}+\frac{-1}{s(s-2)^{2}}\right\rfloor
$$

$$
\underbrace{\operatorname{Cimit}}_{s \rightarrow-2}\left(8\left\lfloor\frac{-1}{s^{2}(s-2)}+\frac{-1}{s(s-2)^{2}}\right\rfloor\right)=8\left\lfloor\frac{-1}{4(-4)}+\frac{-1}{(-2)(-4)^{2}}\right\rfloor=\frac{3}{4}
$$

$\mathcal{L H S} \underbrace{\text { iimit }}_{s \rightarrow-2} \ldots \frac{d}{d s}(s+2)^{2} \mathscr{(s)}=\frac{d}{d s} \mathcal{B}(s+2)=\mathcal{B}$

$$
\mathcal{B}=\frac{3}{4}
$$

- now fave the solution in s

$$
Y(s)=\frac{1}{4}\left\lfloor\frac{-4}{s}+\frac{3}{(s+2)}+\frac{4}{(s+2)^{2}}+\frac{1}{(s-2)}\right\rfloor
$$

$$
\mathcal{Y}(s)=\frac{1}{4}\left\lfloor\frac{-4}{s}+\frac{3}{(s+2)}+\frac{4}{(s+2)^{2}}+\frac{1}{(s-2)}\right\rfloor
$$

- Recall $\mathcal{F}(s)=\frac{n!}{(s+a)^{n+1}}$ is LIT of $f(t)=t^{n} e^{-a t}$
-and $\mathcal{F}(s)=\frac{1}{s} \quad$ is LI of $u(t)=$ unit step
 term with $e^{2 t}$
- By the way: this problem could equally well be solved with Fourier
- Laplace transform applies to continuous signals in time domain

Extend ide a to discrete, sampled signals

- from Laplace $\operatorname{Transform}$ definition

$$
\mathcal{F}(s)=\int_{0}^{\infty} f(t) \cdot e^{-s t} \cdot d t
$$

sample wave form $f(t)$ at intervals Δt
sampled signal

$$
f(t)=f(0), f(\Delta t), f(2 \Delta t), f(3 \Delta t), f(4 \Delta t), \ldots, f(n \Delta t), \ldots
$$

We will assume functions for which $f=0$ for $t<0$

- transform $f(t)$

$$
\mathcal{F}(s)=\sum_{n=0}^{\infty} f(n \Delta t) . e^{-s n \Delta t}
$$

Define $z=e^{s \Delta t}$

$$
\mathcal{F}(z)=\sum_{n=0}^{\infty} f(n \Delta t) \cdot z^{\cdot n}=\sum_{n=0}{ }^{\infty} f_{n} \cdot z^{-n} \quad Z \mathcal{T}[f]=\mathcal{F}(z)
$$

eachtermin z^{-1} represents a delay of Δt, ie $z^{-n}=>$ delay of $n \Delta t$
-(1) $f_{n}=\delta_{0}=10000 \ldots$

$$
\mathcal{F}(z)=1
$$

-(2) $f_{n}=1$ represents a step function, since $f(t)=0$ for all $t<0$

$$
\mathcal{F}(z)=1+z^{-1}+z^{-2}+z^{-3}+z^{-4}+\ldots+z^{-n}+\ldots
$$

Should recognise geometric series, or Ginomial expansion of $(1-x)^{-1}$

$$
\mathcal{F}(z)=\frac{1}{\left(1-z^{-1}\right)}
$$

-(3) $f_{n}=e^{-n a} \quad a=\Delta t / \tau \quad \tau=$ time constant $\Delta t=$ sampling interval

$$
\begin{aligned}
\mathcal{F}(z) & =1+e^{-a} z^{-1}+e^{-2 a} z^{-2}+e^{-3 a} z^{-3}+e^{-4 a} z^{-4} \ldots+e^{-n a} z^{-n}+\ldots \\
\mathcal{F}(z) & =\frac{1}{\left(1-e^{-a} z^{-1}\right)}
\end{aligned}
$$

-(4) $f_{n}=1-e^{-n a}$

$$
\mathcal{F}(z)=\frac{1}{\left(1-z^{-1}\right)}-\frac{1}{\left(1-e^{-a} z^{-1}\right)}=\frac{z^{-1}\left(1-e^{-a}\right)}{\left(1-z^{-1}\right)\left(1-e^{-a} z^{-1}\right)}
$$

- What is the output if every previous input sample is summed with weight e-na?
ie compute $\mathcal{g}_{m}=\sum_{n}{ }^{m} e^{-n a} f_{n}$
- Convolution in time, so becomes z-transform multiplication $\mathcal{G}(z)=\mathcal{H}(z) \mathcal{F}(z)$

$$
\begin{aligned}
& \mathcal{H}(z)=Z \mathcal{T}\left[e^{-n a}\right]=\frac{1}{\left(1-e^{-a} z^{-1}\right)} \quad \mathcal{G}(z)=\frac{\mathcal{F}(z)}{\left(1-e^{-a} z^{-1}\right)} \\
& \mathcal{F}(z)=\left(1-e^{-a} z^{-1}\right) \mathcal{G}(z)=\mathcal{G}(z)-\mathcal{G}(z) e^{-a} z^{-1} \\
& f_{n}=\mathcal{g}_{n}-e^{-a} \mathcal{g}_{n-1} \quad \text { or } \quad \mathcal{G}_{n}=f_{n}+e^{-a} \mathcal{g}_{n-1}
\end{aligned}
$$

-ie L Latest value of output sampled waveform

$$
=\text { current input sample }+ \text { previous output sample } \chi e^{-a}
$$

- Impulse response corresponding to $\mathcal{H}(z)$?
$\mathcal{h}(t)=e^{-n \Delta t / \tau}$ which is impulse response of Low Pass Filter (Problems 2, \mathcal{N} (os)
- Conclusion

Low pass digitalfilter can be made using just two samples

$$
g_{n}=f_{n}+e^{-a} g_{n-1}
$$

well suited for simple digital processor operation

Step response of previous digital filter

- To be more exact

Impulse response of Low Pass filter

$$
f(t)=\frac{1}{\tau} e^{-t / \tau}
$$

$$
g_{n}=\frac{f_{n}}{\tau}+e^{-a} g_{n-1}
$$

1	1	1	1	1	
50	60	70	80	90	100

Deconvolution

- Suppose a signal fas been filtered by a system with a known response
$\mathcal{H o w}$ to recover the input signal from the samples?
In t: \quad input $=f$ output $=g$, filter impulse response $=\hbar$
In z :
$\mathcal{F}(z)$
$\mathcal{G}(z)$
and $\mathcal{H}(z)$

Since $g(t)=f(t)^{*} h(t)$, then $\mathcal{G}(z)=\mathcal{F}(z) \mathcal{H}(z)$
so to recover input $\mathcal{F}(z)=\mathcal{H}^{-1}(z) \mathcal{G}(z)$

- Low pass filter again

$$
\begin{gathered}
\mathcal{H}(z)=\frac{1}{\left(1-e^{-a} z^{-1}\right)} \quad \text { Inverse filter } \quad \mathcal{H}^{-1}(z)=\left(1-e^{-a} z^{-1}\right) \\
f_{n}=\mathcal{g}_{n}-e^{-a} \mathcal{g}_{n-1}
\end{gathered}
$$

terms in z^{-1} identify which delayed samples to use

- Tfis time g_{n} are the measured samples, f_{n} the result of digital processing

An example of a deconvolution filter

- Integrator + CR - RC bandpass filter waveform form weighted sum of pulse samples
$\mathcal{g}_{n}=w_{1} \cdot f_{n+1}+w_{2} \cdot f_{n}+w_{3} \cdot f_{n-1}$
for correct cfroice of w_{i}
(Problems 6)
- Note g_{n} needs f_{n+1}
doesn't violate causality if data are digital, in storage.
or could simply delay output
in applications such as image processing, causality does not apply

CMS experiment at Large $\mathcal{H a d r o n}$ Collider

- uses this deconvolution filter
implemented in CMOS IC

6eam crossings at $40 \mathcal{M H z}(\Delta t=25 n s)$
many events per crossing
small number of weights

implemented as analogue calculation process only data which are to be read out

