Laplace transforms

Once again a practical exposition, not fully mathematically rigorousDefinition

 $F(s) = {}_0 f(t).e^{-st}.dt$ NB lower limit of integral = 0 unilateral LT

more rigorously $F(s) = {}_{0+} f(t).e^{-st}.dt = {}_{limit h \rightarrow 0} |h| f(t).e^{-st}.dt$

[Another variant exists $F(s) = f(t).e^{-st}.dt$ bilateral LT] Unilateral LT convenient for systems where nothing happens before t=0

the inverse Laplace transform is much more complicated mathematically than the Fourier transform,

 $f(t) = (1/2 \ j)_{c-j} \ c+j \ F(s).e^{st}.ds$ j = -1

Cauchy principal value of integral in complex plane

However, <u>this is not generally required in most practical cases</u>. There are many problems where inverse transforms can be found by inspection.

1

Conventions

•- as for Fourier

- f: function to be transformed
- F: Laplace transform of f = LT[f] and inverse $f = LT^{-1}[F]$

Unless specifically stated all functions f(t) are assumed to take the value

 $f(t) = 0 \quad t < 0$

not a real constraint for practical problems

Formally, this can always be achieved for any function by multiplying by unit step function $u(t) \end{tabular}$

•Why use the Laplace transform instead of Fourier? particularly suited for transient problems some functions don't converge Fourier response is an integral sometimes Laplace vs Fourier is just preference

The meaning of s

•In Fourier transforms the complementary variable usually has a clear physical meaning,

```
eg if working in time t <=> or f
```

diffraction in optics, where FTs are used, has a similar relationship between spatial distributions and spatial freqency

•Although Laplace transforms look very similar (and many results can be easily obtained by following methods for deriving FTs), the complementary variable s does not have the same physical significance.

It is a mathematical method of solving problems using transforms

•Since we spent a significant time on the FT, I will not spend so much time on the details of deriving LTs

integrals are usually straightforward

I will discuss only transforms we will need here

Some theorems (compare to FT)	PROVE THEM!!	
•Linearity $LT[a.f(t)+b.g(t)] = a.F(s) + b.G(s)$		
•Shifting in time $LT[f(t-t)] = \int_0^{\infty} f(t-t) \cdot e^{-st} \cdot dt = e^{-s-t}F(s)$		
•Translation in s $LT[f(t)e^{-at}] = \int_{0}^{0} f(t) e^{-at}e^{-st}dt = F(s+a)$		
•Convolution LT[x(t)*y(t)] = X(s)Y(s)		
•Differentiation $f'(t) = d/dt\{(1/2 \ j)_{c-j} \ c+j \ F(s).e^{st}.ds\} = \{(1/2 \ j)_{c-j} \ sF(s).e^{st}.ds\}$		
LT[f'(t)] = sF(s)		
•Integration $_{0}^{t}f(t)dt = _{0}^{t} \{(1/2 \ j) _{c-j} ^{c+j} F(s).e^{st}.ds\}dt$ $= \{(1/2 \ j) _{c-j} ^{c+j} (1/s)F(s).e^{st}.ds\}$ $LT[_{0}^{t}f(t)dt] = F(s)/s$	these are results to be remembered (or derived)	

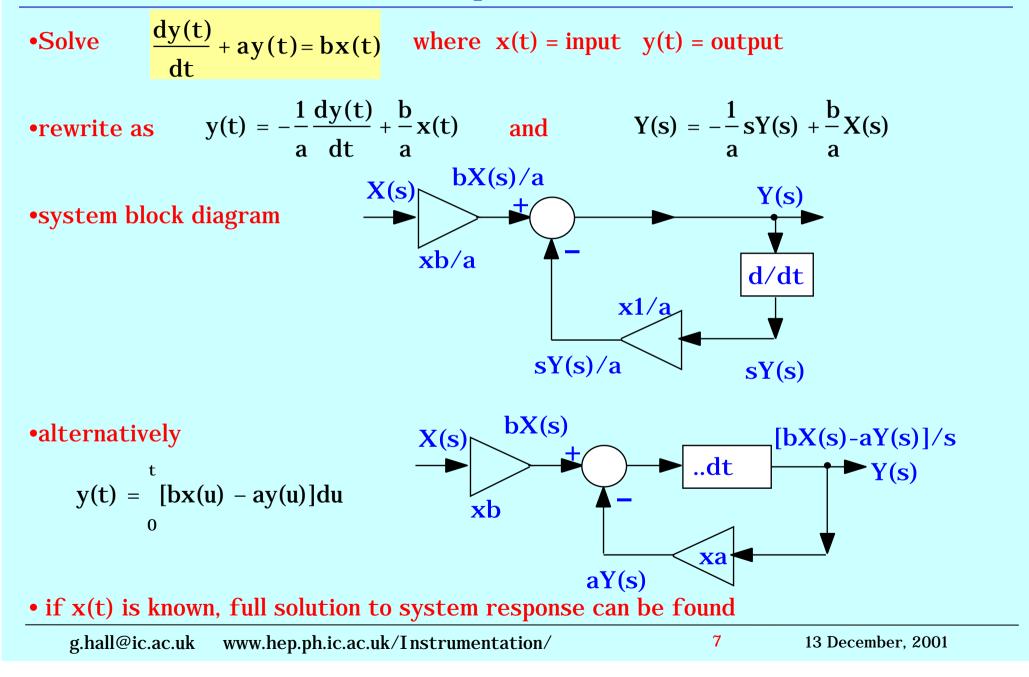
Some examples

(1) $f(t) = e^{-at} t = 0$	$F(s) = {}_{0} e^{-at} \cdot e^{-st} \cdot dt = {}_{0} e^{-(s+a)t} \cdot dt = 1/(s+a)$	
(2) $f(t) = u(t) = 1 t 0$	$F(s) = \frac{1}{s}$	
(3) $f(t) = (t-t_0)$	$F(s) = {}_{0}$ (t -t ₀).e ^{-st} .dt = e ^{-st} ₀ LT[(t)]= 1	
(4) $f(t) = (t-t_0)$	$F(s) = se^{-st}_{0}$ $LT['(t)] = s$	
(5) $f(t) = 1 - e^{-at}$	$F(s) = \frac{a}{s(s+a)}$	
(6) $f(t) = ate^{-at}$	$F(s) = \frac{a}{(s+a)^2}$	
(7) $f(t) = t^n e^{-at}$	$F(s) = \frac{n!}{(s+a)^{n+1}}$	
(8) (t)	F(s) = 2sinh(sa)/s	

Problem solving with LT

•Inductor - resistor circuit		
$v_{in}(t)$ R v_{out}	$v_{out}(t) = i(t)H$ $\frac{L}{R} \frac{dv_{out}}{dt} (t)$	$R \qquad L\frac{di}{dt}(t) + Ri(t) = v_{in}(t)$ $(t) + v_{out}(t) = v_{in}(t)$
•Take Laplace transform	$\frac{L}{R}$ sV _{out} (s) + V _{out}	$t(s) = V_{in}(s)$
•solution $\frac{V_{out}(s)}{V_{in}(s)} =$	$\frac{1}{\frac{sL}{R}+1} = \frac{a}{s+a}$	a = R/L
•Example	it it	
$v_{in}(t) = u(t) = unit step$	$V_{in}(s) = \frac{1}{s}$	$V_{out}(s) = \frac{a}{s(s+a)}$
LT of 1 - $e^{-at} = v_{out}(t)$		

Solution of differential equations



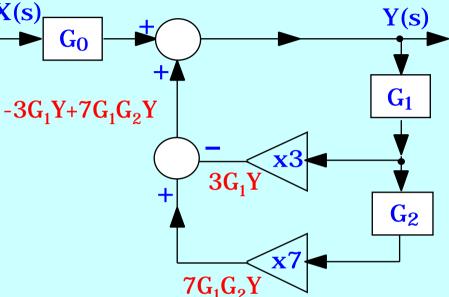
Example (from 2001 exam)

•(i) derive system transfer function

$$Y = G_0 X - 3G_1 Y + 7G_1 G_2 Y$$
$$Y(s) = \frac{G_0 X(s)}{1 + 3G_1 - 7G_1 G_2}$$

•(ii) G₀ has time domain response 24te^{-2t} G₁ is unity gain differentiator G₂ is unity gain integrator G₀(s) = $\frac{24}{(s+2)^2}$ G₁(s) = s G₂(s) = $\frac{1}{s}$ Y(s) = $\frac{24X(s)}{(s+2)^2(1+3s-7)}$ = $\frac{8X(s)}{(s+2)^2(s-2)}$

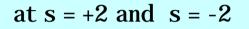
- •(iii) Is system stable to small perturbations?
- •(iv) Find time domain response to step u(t), for t > 0



Stability

 $Y(s) = \frac{8X(s)}{(s+2)^2(s-2)}$

•System has 2 poles: points where Y(s) ->



•If all poles are in region where s < 0, system is stable

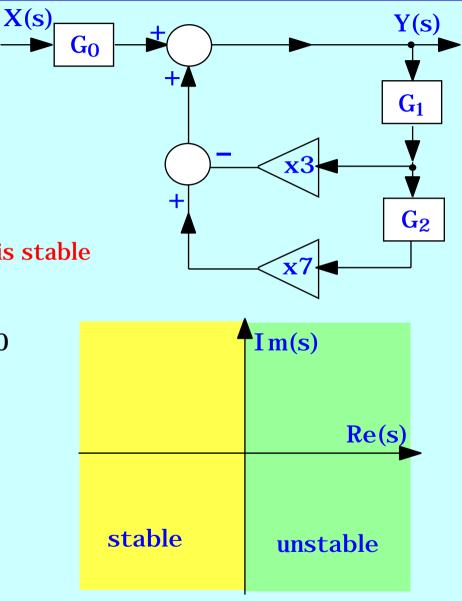
in Fourier language s = j

can only have positive frequencies, ie s > 0

so this system is <u>unstable</u>

will see why from solution

•Pole location s could have imaginary part => oscillatory solution



13 December, 2001

Response to step

•x(t) = u(t) = 1, for t > 0 so X(s) = 1/s
Y(s) =
$$\frac{8X(s)}{(s+2)^2(s-2)} = \frac{8}{s(s+2)^2(s-2)}$$
 = $\frac{A}{s} + \frac{B}{(s+2)} + \frac{C}{(s+2)^2} + \frac{D}{(s-2)}$
• Solve by expressing as partial fractions
•Find A, C, D by taking limit s -> a of (s+a)^NY(s) N is highest power term
•Find A by multiplying by s
RHS $\liminf_{s \to 0} \dots sY(s) = A + \frac{Bs}{(s+2)} + \frac{Cs}{(s+2)^2} + \frac{Ds}{(s-2)} = A$ $A = -1$
LHS $\liminf_{s \to 0} \dots sY(s) = \frac{8}{(s+2)^2(s-2)} = \frac{8}{4(-2)} = -1$
•Find C by multiplying by (s+2)²
RHS $\liminf_{s \to 2} \dots (s+2)^2 Y(s) = A(s+2)^2 + B(s+2) + C + \frac{D(s+2)^2}{(s-2)} = C$ $C =$
LHS $\liminf_{s \to 2} \dots (s+2)^2 Y(s) = \frac{8}{s(s-2)} = \frac{8}{(-2)(-4)} = 1$
similarly D = 1
ghall@ic.ac.uk www.hep.ph.ic.ac.uk/Instrumentation/

1

/4

Step response... continued

$$Y(s) = \frac{8X(s)}{(s+2)^2(s-2)} = \frac{8}{s(s+2)^2(s-2)} = \frac{8}{s(s+2)^2(s-2)} = \frac{A}{s} + \frac{B}{(s+2)} + \frac{C}{(s+2)^2} + \frac{D}{(s-2)}$$

•Find B by multiplying by $(s+2)^2$, differentiate, then take limit

RHS
$$\frac{d}{ds}(s+2)^{2}Y(s) = \frac{d}{ds}\left[\frac{8}{s(s-2)}\right] = 8 \frac{-1}{s^{2}(s-2)} + \frac{-1}{s(s-2)^{2}}$$
$$\lim_{s \to -2} \left(8 \frac{-1}{s^{2}(s-2)} + \frac{-1}{s(s-2)^{2}}\right) = 8 \frac{-1}{4(-4)} + \frac{-1}{(-2)(-4)^{2}} = \frac{3}{4}$$
LHS
$$\lim_{s \to -2} \dots \frac{d}{ds}(s+2)^{2}Y(s) = \frac{d}{ds}B(s+2) = B$$
$$B = \frac{3}{4}$$

•now have the solution in s

$$Y(s) = \frac{1}{4} \frac{-4}{s} + \frac{3}{(s+2)} + \frac{4}{(s+2)^2} + \frac{1}{(s-2)}$$

Finally... solution

$$Y(s) = \frac{1}{4} - \frac{4}{s} + \frac{3}{(s+2)} + \frac{4}{(s+2)^2} + \frac{1}{(s-2)}$$

•Recall $F(s) = \frac{n!}{(s+a)^{n+1}}$ is LT of $f(t) = t^n e^{-at}$
•and $F(s) = \frac{1}{s}$ is LT of $u(t) = unit$ step
 $y(t) = \frac{1}{4} \left[-4u(t) + 3e^{-2t} + 4te^{-2t} + e^{2t} \right]$
 $y(t) = -u(t) + \frac{3}{4}e^{-2t} + te^{-2t} + \frac{1}{4}e^{2t}$
•Can now see the reason for instability

term with e^{2t}

•By the way: this problem could equally well be solved with Fourier

g.hall@ic.ac.uk www.hep.ph.ic.ac.uk/Instrumentation/

z transforms

•Laplace transform applies to continuous signals in time domain Extend idea to discrete, sampled signals

•from Laplace Transform definition

 $\mathbf{F}(\mathbf{s}) = \begin{array}{c} 0 & f(t) \cdot e^{-st} \cdot dt, \end{array}$

sample waveform f(t) at intervals t

sampled signal

f(t) = f(0), f(t), f(2 t), f(3 t), f(4 t), ..., f(n t), ...

We will assume functions for which f = 0 for t < 0

•transform f(t)

$$F(s) = \int_{n=0}^{\infty} f(n t) \cdot e^{-sn t}$$

Define $z = e^{s t}$ $F(z) = {}_{n=0} f(n t).z^{-n} = {}_{n=0} f_n.z^{-n}$ ZT[f] = F(z)each term in z^{-1} represents a delay of t, ie $z^{-n} \Rightarrow$ delay of n t

Examples

•(1) $f_n = {}_0 = 10000$... F(z) = 1•(2) $f_n = 1$ represents a step function, since f(t) = 0 for all t < 0 $F(z) = 1 + z^{-1} + z^{-2} + z^{-3} + z^{-4} + ... + z^{-n} + ...$ Should recognise geometric series, or binomial expansion of $(1-x)^{-1}$

 $F(z) = \frac{1}{(1 - z^{-1})}$ •(3) $f_n = e^{-na}$ a = t/ = time constant t = sampling interval $F(z) = 1 + e^{-a}z^{-1} + e^{-2a}z^{-2} + e^{-3a}z^{-3} + e^{-4a}z^{-4...} ... + e^{-na}z^{-n} + ...$ $F(z) = \frac{1}{(1 - e^{-a}z^{-1})}$ •(4) $f_n = 1 - e^{-na}$ $F(z) = \frac{1}{-1} - \frac{1}{-1} = \frac{z^{-1}(1 - e^{-a})}{-1}$

$$z) = \frac{1}{(1-z^{-1})} - \frac{1}{(1-e^{-a}z^{-1})} = \frac{1}{(1-z^{-1})(1-e^{-a}z^{-1})}$$

Digital filters

•What is the output if every previous input sample is summed with weight e^{-na} ? ie compute $g_m = {}_n{}^m e^{-na} f_n$

•Convolution in time, so becomes z-transform multiplication G(z) = H(z)F(z)

$$\begin{split} H(z) &= ZT[e^{-na}] = \frac{1}{(1 - e^{-a}z^{-1})} & G(z) = \frac{F(z)}{(1 - e^{-a}z^{-1})} \\ F(z) &= (1 - e^{-a}z^{-1})G(z) = G(z) - G(z)e^{-a}z^{-1} \\ f_n &= g_n - e^{-a}g_{n-1} & \text{or} & g_n = f_n + e^{-a}g_{n-1} \end{split}$$

•ie - Latest value of output sampled waveform

= current <u>input</u> sample + previous <u>output</u> sample $x e^{-a}$

•I mpulse response corresponding to H(z)?

 $h(t) = e^{-n t}$ which is <u>impulse</u> response of Low Pass Filter (Problems 2, No 8)

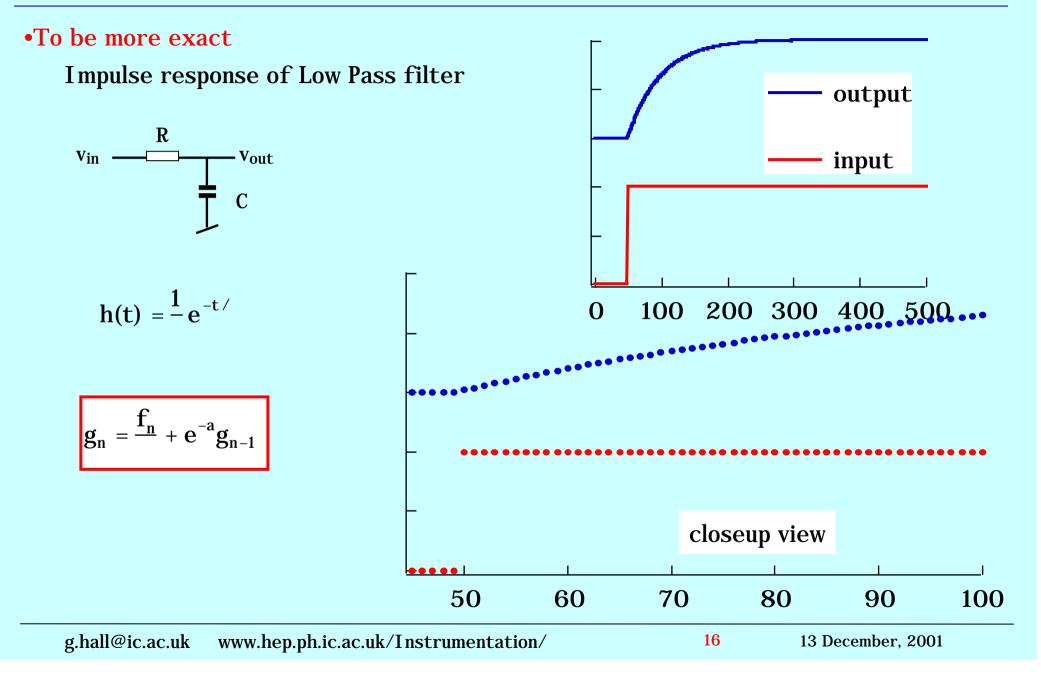
•Conclusion

Low pass digital filter can be made using just two samples well suited for simple digital processor operation

$$\mathbf{g}_{n} = \mathbf{f}_{n} + \mathbf{e}^{-\mathbf{a}}\mathbf{g}_{n-1}$$

15

Step response of previous digital filter



Deconvolution

•Suppose a signal has been filtered by a system with a known response How to recover the input signal from the samples?

In t: input = f output = g, filter impulse response = h

In z: F(z) G(z) and H(z)

Since g(t) = f(t)*h(t), then G(z) = F(z)H(z)

so to recover input $F(z) = H^{-1}(z)G(z)$

•Low pass filter again

terms in z^{-1} identify which delayed samples to use

•This time g_n are the measured samples, \boldsymbol{f}_n the result of digital processing

An example of a deconvolution filter

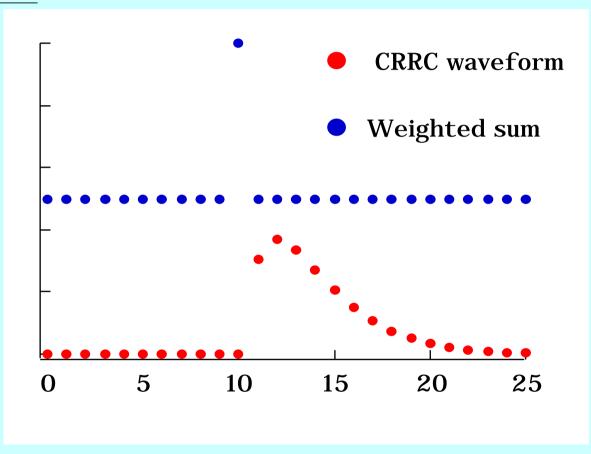
•Integrator + CR-RC bandpass filter waveform form weighted sum of pulse samples

 $\mathbf{g}_{n} = \mathbf{w}_{1} \cdot \mathbf{f}_{n+1} + \mathbf{w}_{2} \cdot \mathbf{f}_{n} + \mathbf{w}_{3} \cdot \mathbf{f}_{n-1}$

for correct choice of w_i (Problems 6)

•Note g_n needs f_{n+1}

doesn't violate causality if data are digital, in storage or could simply delay output



in applications such as image processing, causality does not apply

g.hall@ic.ac.uk www.hep.ph.ic.ac.uk/Instrumentation/

CMS experiment at Large Hadron Collider

•uses this deconvolution filter implemented in CMOS IC

1.0

0.8

0.6

0.4

0.2

0.0

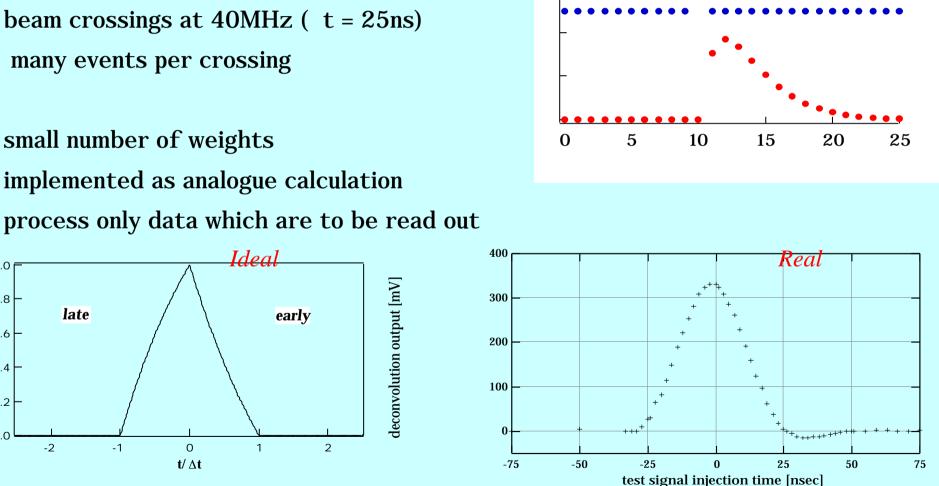
-2

w(t)

late

beam crossings at 40MHz (t = 25ns) many events per crossing

small number of weights implemented as analogue calculation



CRRC waveform

Weighted sum

g.hall@ic.ac.uk www.hep.ph.ic.ac.uk/Instrumentation/ 19 13 December, 2001