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Laplace transforms
•Once again a practical exposition, not fully mathematically rigorous
•Definition

F(s) = ∫ 0
∞ f(t).e-st.dt    NB lower limit of integral = 0 unilateral LT

more rigorously  F(s) = ∫ 0+
∞ f(t).e-st.dt = limit h-> 0∫ |h|

∞ f(t).e-st.dt

[Another variant exists F(s) = ∫ -∞
∞ f(t).e-st.dt    bilateral LT]

Unilateral LT convenient for systems where nothing happens before t=0

the inverse Laplace transform is much more complicated mathematically than the
Fourier transform,

f(t) = (1/2πj)∫ c-j∞
c+j∞  F(s).est.ds j = √-1

Cauchy principal value of integral in complex plane
However, this is not generally required in most practical cases. There are many
problems where inverse transforms can be found by inspection.
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Conventions
•- as for Fourier

f:   function to be transformed
F:   Laplace transform of f   F =  LT[f]   and inverse   f = LT-1[F]

Unless specifically stated all functions f(t) are assumed to take the value
f(t) = 0    t < 0

not a real constraint for practical problems
Formally, this can always be achieved for any function by multiplying by unit step
function u(t)

•Why use the Laplace transform instead of Fourier?
particularly suited for transient problems
some functions don't converge
Fourier response is an integral

sometimes Laplace vs Fourier is just preference
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The meaning of s
•In Fourier transforms the complementary variable usually has a clear physical
meaning,

eg if working in time  t <=> ω or f
diffraction in optics, where FTs are used, has a similar relationship between spatial
distributions and spatial freqency

•Although Laplace transforms look very similar (and many results can be easily obtained
by following methods for deriving FTs), the complementary variable s does not have
the same physical significance.

It is a mathematical method of solving problems using transforms

•Since we spent a significant time on the FT, I will not spend so much time on the
details of deriving LTs

integrals are usually straightforward
I will discuss only transforms we will need here
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Some theorems (compare to FT)
•Linearity LT[a.f(t)+b.g(t)] = a.F(s) + b.G(s)

•Shifting in time
LT[f(t-∆t)] = ∫ 0

∞  f(t-∆t). e-st.dt  = e-s∆t F(s)

•Translation in s
LT[f(t)e-at] = ∫ 0

∞ f(t) e-ate-stdt = F(s+a)

•Convolution
LT[x(t)*y(t)] = X(s)Y(s)

•Differentiation
f'(t) = d/dt{(1/2πj)∫ c-j∞

c+j∞ F(s).est.ds} ={(1/2πj)∫ c-j∞
c+j∞ sF(s).est.ds}

LT[f'(t)] = sF(s)

•Integration
∫ 0

tf(t)dt = ∫ 0
t {(1/2πj)∫ c-j∞

c+j∞ F(s).est.ds}dt
           = {(1/2πj)∫ c-j∞

c+j∞ (1/s)F(s).est.ds}
LT[∫ 0

tf(t)dt] = F(s)/s 

PROVE THEM!!

these are results to 
be remembered
(or derived)
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(1) f(t) = e-at t ≥ 0  F(s) = ∫ 0
∞ e-at.e-st.dt =∫ 0

∞ e-(s+a)t.dt = 1/(s+a)

(2) f(t)  = u(t) = 1  t ≥ 0

(3) f(t) = δ(t-t0) F(s) = ∫ 0
∞ δ(t -t0).e-st.dt = e-st

0 LT[δ(t)]=  1

(4) f(t) = δ’(t-t0) F(s) = se-st
0 LT[δ’(t)]=  s

(5) f(t) = 1-e-at 

(6) f(t) = ate-at

(7) f(t) = tne-at

(8) Π(t) F(s) = 2sinh(sa)/s

Some examples

-a a

PROVE THEM!!

  
F(s) =

a
s(s + a)

  
F(s) =

a
(s + a)2

  
F(s) =

n!
(s + a)n+1

  
F(s) =

1
s
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Problem solving with LT

•Inductor - resistor circuit

•Take Laplace transform

•solution

•Example

vin(t) = u(t) = unit step

LT of 1 - e-at = vout(t)

L

vin(t) vout(t)R
  
L di

dt
(t)+ Ri(t) = vin( t )vout(t) = i(t)R

  
L
R

dvout

dt
(t)+ vout( t )= vin(t)

  
L
R

sVout(s) + Vout(s) = Vin (s)

  

Vout(s)
Vin(s)

=
1

sL
R

+ 1
=

a
s + a

a = R/L

  
Vout(s) =

a
s(s + a)  

Vin(s) =
1
s
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Solution of differential equations

•Solve                     where  x(t) = input   y(t) = output

•rewrite as and

•system block diagram

•alternatively

• if x(t) is known, full solution to system response can be found

  
y(t) = −

1
a

dy(t)
dt

+
b
a

x(t)

  
dy(t)

dt
+ ay(t)= bx(t)

  
Y(s) = −

1
a

sY(s) +
b
a

X(s)

  
y(t) = [bx(u) − ay(u)]du

0

t

∫

X(s) +

d/dt 
x1/a

Y(s)

-xb/a

sY(s)sY(s)/a

bX(s)/a

X(s) + ∫..dt

xa

Y(s)-xb

[bX(s)-aY(s)]/s

aY(s)

bX(s)
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Example (from 2001 exam)

X(s)

+
+G0

G1

G2

x3

Y(s)

x7

+
-

•(i) derive system transfer function

Y = G0X - 3G1Y + 7G1G2Y

•(ii) G0 has time domain response 24te-2t

  G1 is unity gain differentiator

  G2 is unity gain integrator

•(iii) Is system stable to small perturbations?

•(iv) Find time domain response to step u(t), for t > 0

3G1Y

7G1G2Y

  
Y(s) =

G0X(s)
1 + 3G 1 − 7G1G2

  
G0(s) =

24
(s + 2)2   G1(s) = s

  
G2(s) =

1
s

  
Y(s) =

24X(s)
(s + 2)2(1 + 3s − 7)

=
8X(s)

(s + 2)2(s − 2)

-3G1Y+7G1G2Y


