Transistor electronic tecfinologies

- Bipolar Iunction Transistor
discrete or integrated circuit
discrete $=$ individual component
- MOS (Metal-O xide-Sificon) Field Effect Transistor
mainly used in integrated circuits
driven $6 y$ digital applications 6ut analogue
- Iunction Field Effect Transistor
similar in many ways to $\mathcal{M O S} \mathcal{F E T}$
discrete, not easily implemented in ICs
-so - is this a course on circuits?
\mathcal{N} o but it is necessary to understand some basics to be able to deal with more complex elements, including some features of op-amps

Bipolar transistor

- pnp or npn
semic onduc tor, usually S i, but also Ge
heavily doped emitter, lightly doped base
- Operation - npn

Gase is Giased more positive than emitter so a forward biased diode
collector more positive than base $=$ reverse biased diode
majority carriers from emitter diffuse across base to collector
small fraction combine with majority carriers in base
current reaching collector is

$$
\begin{aligned}
& I_{C}=\alpha I_{\mathcal{E}} \quad I_{\mathcal{E}} \approx I_{C} \\
& I_{\mathcal{B}}=(1-\alpha) I_{\mathcal{E}} \\
& I_{C}=\beta I_{\mathcal{B}} \quad=[\alpha /(1-\alpha)] I_{\mathcal{B}} \\
& \beta=\alpha /(1-\alpha)=\text { d.c current gain }=h_{f e} \quad \text { eg } \alpha=0.99 \quad \beta=99
\end{aligned}
$$

arrows show direction of current flow

-Works like npn transistor
Gias arrangements different
but
if emitter is positioned at top
easy to remember both pnp and npn
most positive

most negative

Slightly more precise picture
-to turn lpn transistor on $V_{\mathcal{B}}-V_{\mathcal{E}}=V_{\mathcal{B E}}>0.6-0.7 V$ (invert for pup)

- so we can use it as a switch by controlling $V_{\mathcal{B E}}$

$$
V_{\mathcal{B E}} \approx 0 \quad I_{C}=I_{\mathcal{E}}=0
$$

- However, if trans is tor is $O \mathcal{N} \quad V_{\mathcal{B E}} \approx 0.7 V$
this is a consequence of the diode behaviour. discuss in a moment
-i ncontrast, β is not a reliable parameter for design

$2 n 3906$ nun transistor

NB \log scale for I_{c}

- Iransistor can be modelled as two back-to-back diodes

$$
\left.I-\mathcal{V} \text { befiaviour of diode } I \approx I_{0}\left[\exp \left(q \mathcal{V}_{\mathcal{B E}} / \mathcal{K} \mathcal{T}\right)-1\right)\right]
$$

- Base-emitter diode is forward biased

$$
I_{\mathcal{E}}=I_{\mathcal{E} 0} \cdot\left[e \chi p\left(q \mathcal{V}_{\mathcal{B E}} / \mathcal{K} \mathcal{T}\right)-1\right] \approx I_{\mathcal{E} 0} e x p\left(q \mathcal{V}_{\mathcal{B E}} / K \mathcal{T}\right) \text { ie } \mathcal{V}_{\mathcal{B E}} \approx(\mathbb{K} \mathcal{I} / q) \log _{e} I_{\mathcal{E}}
$$

this explains why $\mathcal{V}_{\mathcal{B E}}$ varies so little with I

- Base-collector diode is reverse biased also basis of band-gap Treference
$I_{\mathcal{B C}}=I_{C O}\left[\exp \left(q \mathcal{V}_{\mathcal{B C}} / K \mathcal{I}\right)-1\right] \approx I_{C 0}$ - which is small
so current arriving at collector is dominated by current fromemitter, which has diffused across base
- How does current vary with small change in $\mathcal{V}_{\mathcal{B E}}$?

$$
\begin{aligned}
& d I_{\mathcal{E}} / d \mathcal{V}_{\mathcal{B E}}=i_{e} / v_{b e}=(q / K \mathcal{T}) I_{\mathcal{E} 0} e \chi p\left(q \mathcal{V}_{\mathcal{B E}} / \mathcal{K} \mathcal{T}\right)=(q / K \mathcal{T}) I_{\mathcal{E}} \\
& i_{e} r_{e}=v_{b e} \text { with } r_{e}=K \mathcal{T} / q I=25 \Omega / I_{\mathcal{E}}(m \mathcal{A})
\end{aligned}
$$

$\mathcal{N B}$ we don't usually need to distinguisf between I_{C} and I_{E} - consider them equal
ie to ac current signals transistor looks like dynamic resistance

- DC conditions $\pm 6 \mathcal{V}$ are example values, but results don't depend on them at all apply our rule that $\mathcal{V}_{\mathcal{B E}} \approx 0.7 \mathcal{V}$

$$
I_{E}=\left[\mathcal{V}_{E}-(-6 \mathcal{V})\right] / \mathcal{R}_{E} \approx\left(\mathcal{V}_{\mathcal{B}}+5.3 \mathcal{V}\right) / \mathcal{R}_{E}
$$

- Now ac Gethaviour

$$
v_{\text {in }}=v_{b}=\Delta \mathcal{V}_{\mathcal{B}}=\Delta\left(\mathcal{V}_{\mathcal{E}}+0.7 \mathcal{V}\right)=v_{e}=v_{\text {out }}
$$

$$
\text { amplifier with gain = } 1 \text { - not very interesting!!?? }
$$

- Input impedance

$\mathcal{R}_{\text {in }}=v_{\text {in }} / i_{\text {in }}$
$i_{\text {in }}=i_{b}=i_{c} / \beta$
$i_{c}=i_{e}=v_{e} / \mathcal{R}_{E}$

$$
\mathcal{R}_{i n}=\beta \mathcal{R}_{\mathscr{E}} \quad \text { figh, eg } \beta \sim 100, \mathcal{R}_{ \pm} \sim 1 \mathrm{~K} \Omega
$$

(more carefultreatment $\Rightarrow \mathcal{R}_{i n}=\beta\left(\mathcal{R}_{ \pm}+r_{e}\right)$
this is promising for a voltage buffer - what is the output impedance?

Emitter-follower output impedance

- How to find it? Consider the 6lack 6ox... vary $v_{\text {out }}$ and see what happens to $i_{\text {out }}$ Keep other conditions fixed
- Tlse Ebers-Moll result $\mathcal{V}_{\text {BE }}=(\mathrm{KI} / q) \log _{e} I_{\text {E }}$

$$
d V_{\mathcal{B F}} / d I_{\mathcal{E}}=v_{b e} / i_{e}=\left(\mathcal{K} \mathcal{T} / q I_{\mathcal{E}}\right)
$$

- If $\mathcal{V}_{\mathcal{B}}$ is constant

$$
\begin{aligned}
v_{\text {out }} & =v_{e} \\
i_{\text {out }} & =i_{e} \\
z_{\text {out }} & =\left(K \mathcal{T} / q I_{\mathcal{E}}\right)=r_{e}=25 \Omega / I_{\mathcal{E}}(m \mathcal{A})
\end{aligned}
$$

small, as required for buffer

Short footnotes

- In analysing circuits for small signal (AC) befaviour
all fixed $\mathcal{D C}$ le vels are equivalent to ground
ie ac current does not need to distinguish voltage at other end of path
- Tfis is oftenusefulinlooking at circuits to tell if routes are in parallel
- Calculations

Ke ep simple
try to make approximations - 1% answers are almost never required if so better tools exist
eg parallelresistances
transistor β - assume $\beta \approx 100$-unless better value known or is critical $47 \Omega \approx 51 \Omega \approx 50 \Omega$

Common-emitter amplifier

- DC conditions $\pm 6 V$ are example values again
$\mathcal{V}_{C}=6 \mathcal{V}-I_{C} \mathcal{R}_{C}$
$\mathcal{V}_{\mathcal{E}}=-6 \mathcal{V}+I_{\mathcal{E}} \mathcal{R}_{\mathcal{E}}$
Since $\mathcal{V}_{E}=\mathcal{V}_{\mathcal{B}}-0.7 V_{,} I_{\mathcal{E}}$ \& I_{C} defined by bias network
- small signal, AC befraviour
$v_{e}=v_{b}=v_{i n}=i_{e} \mathcal{R}_{E}$
$v_{\text {out }}=-i_{c} \mathcal{R}_{\mathcal{C}}$
so $\quad v_{\text {out }} / v_{\text {in }}=-\mathcal{R}_{C} / \mathcal{R}_{E}$

what's the purpose of C?
amplifier with gain
- Input impedance: signal sees bias network in parallel with transistor so $\mathcal{R}_{i n}=\mathcal{R}_{1}| | \mathcal{R}_{2}| | \beta\left(\mathcal{R}_{⿷}+r_{e}\right)$ - typically a figf value

Common-emitter output impedance

- Play same trick as emitter-follower

Gut this time, from output terminal, the two paths for $i_{\text {out }}$ are
collector-base junction
reverse biased diode = higfimpedance
R_{c}

no need to worry about any source impedance driving amplifier
so $Z_{\text {out }} \approx \mathcal{R}_{C}$
usually relatively figh

Reading circuits

- Lookfor the building blocks
usually 6 locks are "vertical columns"
- Lookfor feedbackpaths
horizontal paths,which are not $\mathcal{D C}$ bias, or output-input

Metal-Oxide-Silicon (MOS) devices

- Principle of MOS Field Effect Transistor transistor operation

Metal (poly) gate on oxide between source and drain
Source and drain implants of opposite type to substrate.
Gate is biased to invert channelbelow oxide
apply voltage bias to gate, which...
gives field across oxide modulates current in conducting channel
transistor can be used as switch (digital) or amplifier (analogue)

MOS Field Effect Transistor

- O peration - input signal is voltage on gate very figh input impedance $>10^{12} \Omega$
-I-V behaviour nMOS

$$
\mathcal{V}_{\mathcal{G}}>\mathcal{V}_{\mathcal{T}} \text { to switch on, vary } \mathcal{V}_{\mathcal{D S}}
$$

line ar region

$$
I_{\mathcal{D S}} \sim\left(\mathcal{V}_{\mathcal{G}}-\mathcal{V}_{\mathcal{T}}\right) \mathcal{V}_{\mathcal{D S}}
$$

saturation region
channel "pinch off" near drain

$$
I_{\mathcal{D S}} \sim\left(\mathcal{V}_{\mathcal{G}}-\mathcal{V}_{\mathcal{T}}\right)^{2}
$$

$\partial_{I_{\mathfrak{D S}}} / \partial \mathcal{V}_{\mathcal{G S}}=i_{d s} / v_{g s}=\mathcal{g}_{m}=\left(2 \mu \mathcal{C}_{\text {ox }} I_{\mathcal{D S}} \mathcal{W} / \mathcal{L}\right)^{1 / 2} \quad$ transconductance
defined by geometry ofcurrent only - important for IC design

Designing with $\operatorname{MOS} \mathcal{F E T}$ s

- Mostly operate in saturation - cfioice of gate-source voltage determines current 6ut often bias with current source, so gate voltage "selected by" current

Simple MOS $\mathcal{F E T}$ applications

- Voltage controlled switch very figh resistance in $O \mathcal{F F}$ state $\mathcal{R}_{0 \mathcal{N}} \sim 5-100 \Omega$
fast response ~nsec
Gi-directional

- Voltage controlled resistor operate in linear region $\mathcal{R}_{\mathscr{D S}} \sim 1 /\left(\mathcal{V}_{\mathcal{G}}-\mathcal{V}_{\mathcal{T}}\right)$
convenient for IC design

- MOS circuits are prone to damage from ESD
gate oxides are thinlayers - fewnm in advanced technologies
oxide breakdown field $<1000 \mathfrak{M V} / \mathrm{m}=1 \mathrm{~V} / \mathrm{nm}$

- Human body can easily charge to 30-40KV walking across carpet on adry day
precautions:
circuits designed with protection diodes
stand on conductive pad and earth body with wrist strap

\bullet Equivalent circuit

*A protection diode is included between the gate and the source terminals to protect the diode against static electricity when the product is in use. Use a protection circuit when the fixed voltages are exceeded.

CMOS = Complementary MOS

- Both pMOS and nMOS transistors on same wafer
by putting p-type "wells" into n-type wafer (or vice-versa)
build nMOS transistors in locally p-type region
- Why?
\mathcal{N} MOS inverter

CMOS inverter

CMOS version consumes
power only when switching

6asis of almost all modern logic
In IC technologies, accurate resistors are farder to make than C and transistors

- Almost identic al to MOS FET - difference is

Gate is implante d $p-n j u n c t i o n$ voltage on gate depletes butk silicon
current conducting channelreduced or enlarged

$$
\Delta \mathcal{V}_{\mathcal{G S}}->\Delta I_{\mathfrak{D S}}
$$

- Characteristics - similar to MOS FET
gate is reverse biased diode
high input impedance $\left(\geq 10^{9} \Omega\right)$
small current from diode le akage
usually operated in saturation
channel'pinched off' by depletion.
"typical" values

$$
\mathcal{g}_{m} \sim 10 \mathrm{~mA} / \mathcal{V}=1 / 100 \Omega=10 \mathrm{mS}
$$

FET circuits

- Building blocks resemble bipolar circuits
- Source follower (cf emitter follower)

$$
\begin{aligned}
& i_{d s}=g_{m}\left(v_{g}-v_{s}\right)=\mathcal{g}_{m}\left(v_{\text {in }}-v_{s}\right) \\
& v_{\text {out }}=v_{s}=i_{d s} \mathcal{R}_{s}=\mathcal{g}_{m}\left(v_{\text {in }}-v_{s}\right) \mathcal{R}_{S} \\
& v_{\text {out }} / v_{\text {in }}=\mathcal{g}_{m} \mathcal{R}_{S} /\left(1+\mathcal{G}_{m} \mathcal{R}_{S}\right) \leq 1
\end{aligned}
$$

$\mathcal{R}_{\text {in }} \sim 10^{9}-10^{12} \Omega$
$\mathcal{R}_{\text {out }}=\mathcal{R}_{S}| | \mathcal{R}_{\mathscr{D} S}=\mathcal{R}_{S} /\left(1+\mathcal{G}_{m} \mathcal{R}_{S}\right)$
not low

- Common Source amplifier -

$$
v_{\text {out }} / v_{\text {in }}=-\mathcal{G}_{m} \mathcal{R}_{\mathfrak{D}} /\left(1+\mathcal{G}_{m} \mathcal{R}_{S}\right)
$$

$$
\begin{aligned}
& \mathcal{R}_{\text {in }} \operatorname{fig} \mathfrak{r} \\
& \mathcal{R}_{\text {out }} \approx \mathcal{R}_{\mathscr{D}}| | \mathcal{R}_{\mathscr{D S}}=\mathcal{R}_{\mathscr{D}} /\left(1+g_{m} \mathcal{R}_{\mathscr{D}}\right)
\end{aligned}
$$

Gut more common configuration uses current source with suitable load $i_{\text {out }}=g_{m} v_{\text {in }}$

FET Limitations

- On Resistance
although small, it contributes to $\mathcal{R C}$ time infast switches
- Capacitance
inevitable capacitances between nodes, important for high speed circuits $\mathcal{C}_{\text {gate }} \sim \mathcal{C}_{\text {ox }} \mathcal{W} \mathcal{L}$ for $\operatorname{MOS} \mathcal{F E T} \mathcal{S}$
- Relevance to op-amps
$\mathcal{F E T}$ amplifiers fave much figher input impedance
and drawmuch lower currents
- Cautions
- Latch-up
under certain conditions, parasitic bipolar transistors formed
MOS circuits cango into figh current states - destructive
- ES D
care needed in frandling
protection networks candegrade performance

Another building block - the current mirror
(if time)

- $Q_{1} \leftrightarrow Q_{2}$ are identical transistors

$$
\begin{aligned}
\mathcal{V}_{\mathcal{B E} 1}= & \mathcal{V}_{\mathcal{B E} 2} \text { and } \mathcal{V}_{\mathcal{B E}} \approx(\mathrm{KT} / q) \log _{e} I_{\mathcal{E}} \\
& \text { so } I_{\text {out }}=I_{\text {ref }}
\end{aligned}
$$

widely used in ISs where closely matched transistors are easy to construct - useful to program currents

- add a resistor
$I_{\text {out }}=(\mathbb{K T} / q \mathcal{R}) \log _{e}\left(I_{\text {ref }} / I_{\text {out }}\right)$
$e g \mathcal{R}=1 K \Omega, I_{\text {ref }}=1 m \mathcal{A}=>I_{\text {out }}=67 \mu \mathcal{A}$

$$
\begin{aligned}
& \text { add another resistor } \\
& \mathcal{V}_{\mathcal{B E 1} \approx} \approx \mathcal{V}_{\mathcal{B E 2} 2} \\
& I_{1} / I_{2}=\mathcal{R}_{2} / \mathcal{R}_{1} \\
& \\
& \text { also works for discrete } \\
& \text { circuits }
\end{aligned}
$$

Band-gap circuit

- To be more precise,
$\mathcal{V}_{\mathcal{B E}} \sim \log ($ current density) so in non-matched transistors with same current, and ratio of emitter areas r

$$
\mathcal{V}_{\mathcal{B E} 1^{1}} \mathcal{V}_{\mathcal{B E} 2}=(\mathbb{K} \mathcal{I} / q) \ln (r)
$$

easy to achieve in IC technology

- Principle of $\mathfrak{A D 5 9 0}$ T sensor

Proportional \mathcal{T} o $\mathcal{A b s o l u t e}$ Temperature ($\mathcal{P I} \mathcal{A T}$)

$$
\begin{aligned}
& I_{1}=I_{2} \\
& \Delta \mathcal{V}_{\mathcal{B E}}=(K \mathcal{T} / q) \ln (r)=I_{1} \mathcal{R}+1.6^{\circ} \mathrm{C} \\
& I=I_{1}+I_{2}=\left(2 K \mathcal{T} / q \mathcal{R} \ln (r){ }_{+0.8^{\circ} \mathrm{C}}\right. \\
& r=8 \quad \mathcal{R} \approx 1 k \Omega \\
& I \approx 1 \mu \mathcal{A} / \mathcal{K} @ 300 \mathcal{K} \underset{\substack{\text { ABSOLUTE } \\
\text { ERROR }}}{0}
\end{aligned}
$$

R should vary little with \mathcal{T}

- actual $\mathfrak{A D} 590$ only sligftly mor

$\mathfrak{A D 5 9 0}$ precision

Transistor differential amplifier

- $D C R_{1}$ is large, to act as current source

$$
\begin{aligned}
& \mathcal{V}_{\mathfrak{A}}=\mathcal{V}_{E E}+I \mathcal{R}_{1} \\
& \mathcal{V}_{E 1}=\mathcal{V}_{\mathfrak{A}}+I_{1} \mathcal{R}_{\mathbb{E}} \quad \mathcal{V}_{\mathcal{E} 2}=\mathcal{V}_{\mathfrak{A}}+I_{2} \mathcal{R}_{E} \quad \text { (ignoring } r_{e} \text {) }
\end{aligned}
$$

- AC

$$
\begin{aligned}
& v_{1}=v_{\mathcal{A}}+i_{1} \mathcal{R}_{\mathbb{E}}=i \mathcal{R}_{1}+i_{1} \mathcal{R}_{\mathbb{E}} \\
& v_{2}=v_{\mathfrak{A}}+i_{1} \mathcal{R}_{\mathbb{E}}=i \mathcal{R}_{1}+i_{2} \mathcal{R}_{\mathbb{E}} \\
& i=i_{1}+i_{2} \\
& v_{1}-v_{2}=\left(i_{1}-i_{2}\right) \mathcal{R}_{\mathbb{E}} \\
& v_{0}=-i_{2} \mathcal{R}_{C}
\end{aligned}
$$

- For differential inputs $v_{1}=-v_{2}$ so $i=0$

$$
\mathcal{G}_{d i f f}=v_{0} /\left(v_{2}-v_{1}\right)=\mathcal{R}_{c} / 2 \mathcal{R}_{\mathbb{E}}
$$

- Common mode $v_{1}=v_{2}=v_{c m} / 2$

$$
\begin{aligned}
& v_{1}+v_{2}=2 i \mathcal{R}_{1}+\left(i_{1}+i_{2}\right) \mathcal{R}_{ \pm}=i\left(2 \mathcal{R}_{1}+\mathcal{R}_{E}\right) \\
& \mathcal{G}_{c m}=v_{0} / v_{c m}=-\mathcal{R}_{\mathcal{C}} /\left(2 \mathcal{R}_{1}+\mathcal{R}_{ \pm}\right) \\
& C M R \mathcal{R} \approx 2 \mathcal{R}_{1} / \mathcal{R}_{ \pm} \quad \mathcal{R}_{1}>\mathcal{R}_{ \pm}
\end{aligned}
$$

```
Wrat's inside an op-amp...
```

- Look for the building blocks...

MOS IC amplifiers look similar but currents determined by transistor aspect ratios

