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Abstract

This report describes the progress on the magnet part of the Absorber Focus Coil module for the international Muon lonization Cooling Experiment (MICE).
The MICE absorber focus coil module consists of a pair of superconducting solenoids, mounted on an aluminum mandrel. The coil package that is in its own
vacuum vessel is around an absorber. The absorber is within a separate vacuum vessel that is within the warm bore of the focusing magnet. The
superconducting focus coils may either be run in the solenoid mode or in the gradient mode. The coils will be cooled using a pair of small 4 K coolers. The
progress on the MICE focusing magnets, the magnet current supply system, and the quench protection system are discussed.
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Fig.1. shows the general layout of the MICE cooling channel. The proposed MICE experiment Fig.2. shows the 3D view of the Absorber Focusing
will test cooling on a low intensity muon beam from the ISIS ring at the Rutherford Appleton Coil Module. The absorber cools the muon beam by
Laboratory in the United Kingdom. ionization cooling.
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Magnet Cryostat The focusing magnet cold mass
support is a self-centering support
system, see Fig 4. The support system
is designed to carry a sustained
longitudinal force up to 500 kN (50
tons) and transient forces up to 1000

kN (100 tons).
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The connection of the cooler to the magnet
is designed to maximize the focusing
magnet operating temperature margin.
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Power Supply and Quench Protection
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Fig. 5. The Focusing Magnet Current and Hot Spot ‘Nominal Quench Back Time (s) 1.07
Tem":z"l'\‘;;; E‘;“;,‘;‘;i,‘;g,f;gifg‘gﬁj‘j’;“,ﬂf;ﬂﬁ;];;m for Fig.6. . Circuit Diagram for Three Focus Magnets in Series * Design based on p = 240 MeV/c and beta = 420 mm
Fig.7. shows the FEA study The focusing magnet is designed so that it can be operated in the MICE cooling channel where the fields from other magnets

case for the quench analysis. interact with the focusing magnet. The focusing magnet quench characteristics permit the three magnets to be operated in series.
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Abstract

This report describes the progress made on the design of the liquid hydrogen absorber for the international Muon lonization Cooling
Experiment (MICE). The absorber consists of a 21-liter vessel that contains liquid hydrogen (1.5 kg) or liquid helium (2.63 kg). The liquid
cryogen vessel is within the warm bore of the superconducting focusing magnet for the MICE. The purpose of the magnet is to provide a low
beam beta region within the absorber. For safety reasons, the vacuum vessel for the hydrogen absorber is separated from the vacuum vessel
for the superconducting magnet and the vacuum that surrounds the RF cavities or the detector. Because the muon beam in MICE is of low
intensity, there is no beam heating in the absorber. As a result, the absorber can be cooled using a single 4 K cooler. The development
progress on MICE liquid absorber and its cryogenic cooling system are discussed.
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The Absorber and AFC module The absorber System Design and Safety

The liquid absorber is designed in accordance with pressure vessel
code for flammable liquids. The working pressure of the absorber was
set to 1.7-bar (25 psi) and the burst pressure of >6.8 bar (100psi) .
The RAL safety standards require that the absorber withstand a
double fault. As a result, there is a vacuum vessel around the liquid
absorber volume.
The connection of the cooler to the
N absorber is shown in the Fig 4. A 1.5
e ———— 500 W (at 4.2 K) cooler will be used to

Absorber Thin Window Diameter (mm) 300 keep the absorber COld.
Maximum LEL Length in Absorber (mm) 3350

Table 1. The Basic Parameters of the MICE liquid Absorber
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(?f AFC mOdU|e. Show.s the ToralAbsoﬂiLct}'eedTube(I_(eng)th(m) 22 Figure 4 also shows an absorber that
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Figure 4. A Schematic Representation of the MICE liquid Absorber and Its Connection to the 4 K Cooler

Absorber window and body
Figure 3. A Three Dimensional View of the Liquid Absorber and prototype
Its Cooling System and Hydrogen Supply System

Table 2. Operating Parameters of the MICE Absorber with
Liguid Helium and Liquid Hydrogen

Overating Parameter LHe LH From Table 2, one can see Conotal

— ———— that liquid helum volume The liquid absorber is at the heart of MICE. The liquid absorber
Maximum T at 1.7 bar (K) 482 221 X . .
Triple Point Temperature (K) 217 138 Change over operating has been designed so tha}t it can.be removed from the AFC
Fill Temperature (K) 44 920 temperature range determines module and be replaced with a solid absorber or another liquid
Fill Pressure (bar) 12 12 the volume of the condenser- absorber. Considerable progress has been made on the
Maximum Absorber T (K) 46 210  surge tank. design of the MICE liquid absorber and the cryogenic system
Minimum Absorber T (K) 38 150 that connects the MICE liquid absorber to the 4 K cooler that is
Liquid Volume Change (liters) 265 179 used to keep the absorber cold when it is filled with liquid

hydrogen or liquid helium.
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This report describes the progress on the coupling magnet for the international Muon lonization Cooling Experiment (MICE). MICE consists of two cells of a
SFOFO cooling channel that is similar to that studied in the level 2 study of a neutrino factory [1]. The MICE RF coupling coil module (RFCC module) consists of a
1.56 m diameter superconducting solenoid, mounted around four cells of conventional 201.25 MHz closed RF cavities. This report discusses the progress that
has been made on the superconducting coupling coil that is around the center of the RF coupling module. The process of cooling the coupling coil using single
small 4K cooler, the coupling magnet power system and quench protections system are also discussed.

The RFCC module

Introduction

The proposed MICE experiment will test cooling on a low intensity muon
beam generated on a plunging target in the proton beam in the ISIS ring
leton Laboratory in the United Kingdom.

The RFCC module consists of four cells of 201.25 MHz RF that are in a 25 T
solenoidal magnetic field that is generated by the coupling.
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Fig.2. shows the 2D engineering drawing of MICE layout

The Coupling Magnet Design
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No. Turns per Layer
Magnet J (A mm™)*
net Current (A)*
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697 mm

151
1155
2132
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Table 1. Desien Parameters for the Coupling Magnet — The  coupling magnets for

e P MICE can pe .bunt. using

| — Vacuum Vessel Coil Length (mm) 250 COmmerC|a| mOqum titanium

Coil Inner Radius (mm) 725 MRI conductors. The

S Cail Coil ]‘hm\.ncs\[mm) 116 diameter of the coupling
Number of Layers 104

magnet is determined by the
diameter of the 201.25 MHz
RF cavities and the vacuum
vessel that must go around

Peak Induction in Coil (T)* 781 the cavities. The length of

Magnet Stored Energy (MI)* 12.8 the COUp”ng magnet is
4.2 K Temp. Margin (K)* 0.6 .

* Design based on p = 240 MeV/c and beta = 420 mm determmed by the SpaCe

— between the cavity RF

A Cross-section View of One Half of the Coupling Magnet Showing the couplers and the cavity
tuners.

Magnet Dimensions

Cooling the magnet with a Cooler

the
Sumitomo  RDK-
415GM Cooler,
which is proposed
to use for MICE

Fig.6 shows

The MICE coupling magnets
is designed to be cooled
using a single (1 to 1.5 W) 4.2
K cooler. The connection of
the cooler to the magnet is
designed to maximize the
coupling magnet operating
temperature margin.

Cavity model showing
external cooling tubes

An 8-cm-radius curved Be
window made by Brush-
Wellman for 805-MHz RF
cavity tests. An equivalent
21-cm-radius window will be
used for the MICE 201-MHz
cavity.
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Table 2. The Basic Quetich Characteri stice ofthe Coupling Ivagmet

Operating at Peals Currentin the Flip Mode

Paranweter

Mazitmim Current [4) 2132
Conductor Current Density (4 mni)* 154.5
Magnet Self Inductance (H) 563
Magnet Stored Energy (MJ)* 123
EJ¥ at Madmum Current (1 4% mm*)*  3.06=10%
Quench Velocity along Wire (ms™) 4.0
Coil Average Radiug (m) 783
Coil Thickness (mm) 116
Coil Length (rmem) 250
Time Constant for a Safe Quench (s) 10.09
Nominal Quench Back Time (s) 2.17

* Design bazed on p =240 MeV /o and bta =420 rren

5 Fig.3. shows the 2D RFCC module, Four 201 MHz cavities are
shown installed in the MICE cooling channel.

3D view of Coupling Coil

Power supply and Quench protection

Two coupling magnets is
proposed to be powered in
series.

however because of the
high stored energy and
long quench back time,
two magnets in series will
have a higher hot spot
temperature at the point
of the quench.

Sub—division of the coupling magnet using cold diodes and
resistors will result in lower quench voltages and a lower hot
spot temperature even when the magnets are in series. The
concept of sub-dividing the magnet with cold diodes and

resistors is illustrated in Figure 5.
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Fig.5. shows circuit diagram for a single coupling magnet

The coupling magnet will quench safely without quench
protection. The two coupling magnets can be connected in
series, but separate power supplies for each magnet will result
in a shorter charging time for the coupling magnets.




