

MuCool Hardware R&D: Status and Prospects

Daniel M. Kaplan

NuFact '02 Workshop Imperial College London, England July 5, 2002

Outline:

- 1. MuCool Collaboration and Mission
- 2. High-gradient normal-conducting RF R&D
- 3. High-power LH₂-absorber R&D
- 4. Gaseous-absorber option
- 5. MuCool Test Facility
- 6. Summary

MuCool Collaboration

16 Institutions from US, Europe, and Japan:

<u>RF Development</u>	Absorber R&D	Cooling Experiment
ANL	FNAL	ANL
FNAL	IIT	BNL
IIT	KEK	FNAL
LBNL	NIU	IIT
Univ. Mississippi	UIUC	LBNL
	Univ. Mississippi	Princeton
Beam Diagnostics	Univ. Osaka	UCLA
ANL	Univ. Oxford	UIUC
FNAL	Solenoids	Univ. Mississippi
IIT	LBNL	
Univ. Chicago		

Mission: Design, prototype, & bench-test all cooling-channel components & make an engineering beam test of a cooling section

MuCool R&D Projects & Facilities

Test facilities for the above:

- FNAL Lab G
- FNAL Linac-area MuCool Test Facility

Simulation studies in support of cooling R&D

Key R&D Issues

- 1. Can NCRF cavities be built that provide the required accelerating gradients, operating in multi-tesla fields?
- 2. Can the heat from dE/dx losses be adequately removed from the absorbers?
- 3. Can the channel be engineered with an acceptably low thickness of nonabsorber material (absorber, RF, & safety windows) in the aperture?
- 4. Can the channel be designed & engineered to be cost effective?

High-Gradient-RF-Cavity R&D

ANL / FNAL / IIT / LBNL / UMiss

• Goal:

201-MHz Cu cavity with > 20-MV/m on-axis accelerating gradient, operable in few-T solenoidal magnetic field

- But rapid progress easier with smaller-scale prototypes \rightarrow initial tests at 805 MHz
- Pillbox cavity (cells closed with conducting windows) can save $\approx 50\%$ in power

Open-cell 805-MHz prototype under high-power test in Lab G superconducting solenoid

Closed-cell 805-MHz prototype undergoing bake-out at LBL (now under high-power test in Lab G)

Beyond the Kilpatrick Criterion

• High-power open-cell 805-MHz tests in Lab G (Summer 2001):

- Closed-cell prototype now up to 34 MV/m accelerating field at B = 0
 - tests with solenoidal field to be done in coming months

Rings due to magnetic focusing of emission from irises: (J. Norem, ANL)

- Localized sharp emitters experience peak electrostatic force exceeding Cu tensile strength
 - ionized Cu globules ejected from surface accelerate towards vacuum window

See large dark current at high gradients:

...along with high X-ray flux

- Consistent as expected with Fowler-Nordheim equation, with local field enhancement $\sim 10^3$ compared to smooth, flat surface
 - approx. power-law parametrization gives $I \propto E^{9 \text{ to } 10}$
 - see J. Norem et al., submitted to Phys. Rev. ST Accel. Beams
- Note: these protoypes made with standard machining techniques
- Will now focus R&D on darkcurrent reduction
 - explore surface prep., coatings, treatment (á là niobium cavities)
 - lots of room for improvement!
 - area of general interest (e.g. NLC)
 - MICE requires single-particle detectors near cavities

<u>201-MHz Design Work</u> (T. Ladran, D. Li, R. Rimmer, LBNL)

• Both electrical and mechanical design in progress:

<u>Cell Closure Details</u>

(T. Ladran, D. Li, LBNL; A. Moretti, FNAL; M. Alsharoa, M. Gosz, IIT) Two alternatives under consideration:

Thin Beryllium foilsGrid of Thin Hollow Tubes• Need foil suff. thick so no deflection under RF heating \Rightarrow gas-cooled tubes may be thinner

Absorber R&D Collaboration

E. Almasri, E. L. Black, K. Cassel, R. Johnson[†], D. M. Kaplan, W. Luebke *Illinois Institute of Technology**

S. Ishimoto, K. Yoshimura KEK High Energy Accelerator Research Organization

M. A. Cummings, A. Dychkant, D. Hedin, D. Kubik Northern Illinois University*

> Y. Kuno Osaka University

D. Errede, M. Haney University of Illinois at Urbana-Champaign*

> M. Reep, D. Summers University of Mississippi

W. Lau University of Oxford

in collaboration with

D. Allspach, C. Darve, S. Geer, C. Johnstone[‡], A. Klebaner, B. Norris, M. Popovic, A. Tollestrup *Fermilab*

* member, Illinois Consortium for Accelerator Research [†] also at Muons, Inc. [‡] also at IIT

Comparing potential absorber media:

• 2D transverse-cooling rate: $\frac{d\varepsilon_{x,N}}{dz} \approx -\frac{1}{\beta^2} \frac{\varepsilon_{x,N}}{E} \left| \frac{dE}{dz} \right| + \beta_{\perp} \frac{(0.014 \text{ GeV})^2}{2\beta^3 E m_{\mu} L_R}$

Mat'l	ρ	dE/dx	dE/dx/cm	L_R	merit	
	(g/cm ³)	(MeV/g·cm ²)	(MeV/cm)	(cm)	$(L_R dE/dx)^2$	
LH ₂	0.0708	4.05	0.29	866	1	
LHe	0.125	1.94	0.24	755	0.51	
LiH	0.82	1.94	1.59	106	0.44	
Li	0.53	1.64	0.88	155	0.28	
CH ₄	0.42	2.42	1.03	46.5	0.19	
Be	1.848	2.95	2.95	65	0.17	

-"merit" \propto 4D transverse-cooling rate -

- ⇒ In scattering-limited regime, as cooling/heating equilibrium approached (ring cooler, e.g.), LH₂ best by factor of at least ≈ 2 Case Final u/p Loss
- Far from equilibrium (e.g. FS-II linear cooling channel), differences among materials (hence LH₂ advantage) small:
- Exploiting LH₂ advantage requires care in window design

Case	Final µ/p	Loss	
"FS II"	0.139 ± 0.04	-	
+2x Al	0.127 ± 0.02	8.6%	
LHe	0.121 ± 0.02	12.9%	
LiH	0.121 ± 0.02	12.9%	

Absorber Power Handling

• vF Feasibility Study II absorbers (1 MW Proton Driver, μ^+ or μ^-):

Absorber	Length (cm)	Radius (cm)	Window thickness (µm)	Number needed	FS-II power (kW)	"RevFS-II" power (kW)	
Minicool?	175	30	?	2	≈5.5	≈22	(Not LH2)
SFOFO 1	35	18	360	16	≈0.27	≈2	
SFOFO 2	21	11	220	36	≈0.1	≈0.9	

– power dissipation w/ 4-MW Proton Driver & both μ charges at once -

- First, estimate rate of bulk temperature rise if no flow: $c_p = 1.1 \times 10^4 \text{ J/kg} \cdot \text{K}$

$$\Delta T / s = \frac{\langle P \rangle}{c_p V \rho} = \frac{\langle P \rangle / L}{c_p A \rho}$$
$$= \frac{2 \text{ kW} / 0.35 \text{ m}}{1.1 \times 10^4 \text{ J/kg} \cdot \text{K} \times \pi (0.16 \text{ m})^2 \times 70.8 \text{ kg/m}^3}$$
$$\approx 0.1 \text{ K/s}$$

- \Rightarrow to keep $\Delta T \leq 0.1$ K takes 0.1 volume change/s $\approx 3 l/s$ for SFOFO 1 absorber
- \rightarrow should be feasible if good transverse mixing, without eddies or dead zones
- Note ring cooler calls for ≈ 10 passes $\Rightarrow \approx 20$ kW \Rightarrow **R&D issue**

Forced-Flow Absorber Design (E. Black, IIT)

- Heat exchange carried out in cooling loop external to absorber
- Transverse mixing established by forced flow through nozzles:

Convection-Cooled Absorber Design

(S. Ishimoto, K. Yoshimura, KEK)

- Heat exchanger built into absorber vessel
 - smaller total hydrogen volume
 - flow intrinsically transverse
 - simpler design (fewer moving parts)
 - R&D issue: what is max power?
- Prototype built and tested with LNe via resistance heating at KEK
 - pushed to 100 W at KEK, to be followed by LH2 tests at FNAL

2D CFD flow calculation at IIT

Array of - heating wires

Absorber Windows

(E. Black, IIT; W. Lau, Oxford; M. Reep, D. Summers, UMiss)

- **R&D issue:** conventional designs for pressure-vessel windows too thick
 - FS-II SFOFO 1 windows assumed 360 μm, vs. 530 μm for ASME torispherical
 - → Developing thin, tapered windows, custom-machined (with integral flange) out of a single block of material:

- New "inflected" design is 40% thinner in center (where most of beam goes) but thicker at edges
 - To assess effect on cooling requires simulation study (in progress)

- Design safety needs confirmation by destructive pressure tests, careful measurements, & FEA
 - require $\times 4$ safety factor $\Rightarrow 100$ psid

Non-Contact Precision Measurements

(M. A. Cummings, D. Kubik, NIU; J. Greenwood, FNAL)

- Projected-spot photogrammetry:
 - spot pattern projected onto object by strobe lamp
 - digital video camera records pattern from several vantage points

• Good agreement with finite-element modeling of shape vs. pressure:

- computer analysis finds 3D position of each spot to $<10 \ \mu m$ by triangulation
- agreement improved by nonlinear FEA
 takes inelastic behavior into account
- Now used also to measure window thickness profile by "shooting" from both sides

Impact of Safety Requirements

• Established FNAL liquid-hydrogen rules are explicit:

must prevent oxygen contamination within hydrogen loop, AND
 must exclude ignition sources from vacuum vessel containing absorber

- Since RF cavities considered an ignition source,
 - \Rightarrow must have "primary containment" vacuum vessel surrounding absorber vessel
 - \rightarrow twice as many windows as in Feasibility Study II simulation!
- Fortunately,

vacuum window need not be as strong as absorber window (since not an LH_2 container):

- must withstand 75 psid internal pressure 25 psid external pressure

w/o rupture or irreversible deformation

 \Rightarrow total Al thickness comparable to that in FS-II:

• "SFOFO 1" lattice: $360 \ \mu m \rightarrow 220 \ \mu m + 160 \ \mu m$

assuming 6061-T6 Al alloy – can probably do even better with new alloy...

Even Thinner Windows?

(D. Summers, UMiss)

• "Aircraft alloys" (containing Li) are stronger & lighter than 6061:

Al alloy name	Composition	Density	Yield strength @300K	Tensile strength @300K	Tensile strength @20K	Rad. Length
	% by weight	(g/cc)	(ksi)	(ksi)	(ksi)	(cm)
6061-T6	1.0Mg 0.6Si 0.3Cu 0.2Cr	2.70	40	45	68	8.86
2090-T81	2.7Cu 2.2Li .12Zr	2.59	74	82	120	9.18

\Rightarrow Windows could be \approx 45% thinner, **if**

- 2090-T81 has good machinability and vacuum performance, and
- such thin windows can be reliably machined (125 μ m thinnest attempted so far)
- ... to be tested soon at U. Miss.

Gaseous Absorber?

(R. Johnson, Muons, Inc.; A. Moretti, M. Popovic, FNAL; D. Kaplan, IIT)

- Idea: why not eliminate (almost) all the windows?
 - Cooling channel becomes series of RF cavities (in suitable focusing field) filled with high-pressure gaseous H₂, protected against breakdown by the Paschen effect:

Breakdown voltages in hydrogen (Müller, 1966. Figure 8.13. Theory and experiment compared for hydrogen at 2.8 GHz permission of Springer-Verlag) (MacDonald and Brown, 1949. Reproduced by permission of The America Physical Society)

- Paschen's Law: $V_s = 0.448 (nd) + 0.6 (nd)^{1/2}$ (need to confirm in our regime)
- $\Rightarrow \text{Breakdown suppressed for } P \geq \begin{cases} 40 \text{ atm (room temp.)} \\ 10 \text{ atm (LN}_2 \text{ temp.)} \end{cases}$
- \rightarrow To match absorption to RF gradient, need $P \approx 23$ atm at LN₂ temp.

Gaseous Absorber Update

• News since NuFact '01:

R. Johnson has formed Muons, Inc. and, in collaboration with IIT, successfully obtained a U.S. DOE Small-Business Technology Transfer grant to develop a practical, high-gradient, pressurized RF cavity that operates under the conditions needed for muon ionization cooling

• STTR Phase 1: awarded \$100K, 6/2002 to 3/2003

Build a test cell at IIT and use it at FNAL Lab G to measure the Paschen curve (breakdown voltage vs. pressure) of helium at 805 MHz at 80K over many-atmosphere range in *P*

• STTR Phase 2: up to \$500K, up to 2 years (contingent on successful completion of Phase 1 & favorable review of Phase 2 proposal)

Extend measurements to hydrogen and 201 MHz, with and without solenoidal field and ionizing radiation, at the new MuCool Test Facility

• **STTR Phase 3:** (Requires another funding source)

Build a complete demonstration cooling channel to be tested at MICE

MuCool Test Facility

- Need facility in which to test
 - absorbers
 - RF cavities
 - solenoids
- Show that cooling cell is operable in an intense beam (engineering test, not cooling demo)
- ∃ convenient location: end of Linac has
 - space
 - 201 & 805 MHz RF power sources
 - 400 MeV beam up to $2.4 \times 10^{14} \, p/s \rightarrow 570 \, \text{W}$ in 35-cm LH₂ absorber (higher at lower E)

<u>Summary</u>

- Continued steady progress developing components for a cooling channel
- Ongoing 805 MHz RF R&D program will develop techniques required for low-dark-current, high-gradient NCRF cavities operable at high *B*
- Healthy progress developing LH₂ absorbers with thin windows
- Some open R&D issues:
 - How suppress dark current in NCRF cavities?
 - What are the limits to power-handling capability in LH2 absorbers?
 - How minimize effect of windows on cooling performance?
 - Are gaseous absorbers a viable alternative?
- Opportunities for Ph.D. and M.S. students in beam physics & engineering
 - already 1 Ph.D. & 1 M.S. completed, 2 Ph.D.'s in progress
- International participation in place
- More collaborators welcome!
 - contact Steve Geer <sgeer@fnal.gov>