

Status and Prospects of Neutrino Oscillations: Terrestrial Sources

D. Markoff North Carolina State University Triangle Universities Nuclear Laboratory

Oscillation Evidence From What Nature Provides

ТҮРЕ	MIXING	δm^2	sin²2θ
Atmospheric	$V_{\mu} \to V_{\tau}(\text{not}V_{e})$	$\sim 10^{-3} \text{ eV}^2$	~ 1
Solar	$ u_e \rightarrow \nu_\mu, \nu_\tau $	10 ⁻⁵ -10 ⁻⁴ eV ²	~ 0.8

Atmospheric Anomaly

Solar Neutrino Defici

Can we develop a consistent and complete description of neutrino oscillations?

Consider 3 v mixing: $\Sigma \delta m^2 = \delta m_{12}^2 + \delta m_{23}^2 + \delta m_{23}^2 = 0$

What are the mixing parameters? $(\delta m, \theta)$

Be clever with terrestrial sources to dial-in measurement conditions – probe the $(\delta m^2, \sin^2 2\theta)$ parameter space

Neutrino Oscillation Parameters

Mixing Matrix, U

Flavor eigenstates
$$\begin{pmatrix} v_e \\ v_{\mu} \\ v_{\tau} \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}$$
 Mass eigenstates

 $U_{\alpha i}$ matrix elements mixing flavor ($\alpha = e, \mu, \tau$) and mass (i=1,2,3) eigenstates.

 $U_{\alpha i}$ depend on pairwise mixing angles $(\theta_{12}, \theta_{23}, \theta_{13})$ between mass states.

(Mixing matrix, U also depends on phase(s), δ , producing CP odd terms.)

Assume decoupling of solar and atmospheric oscillations ($\theta_{13} = 0$):

$$\sin^2 2\theta_{\text{solar}} \approx \sin^2 2\theta_{12} \approx 0.8$$

$$\sin^2 2\theta_{\text{atmos}} \approx \cos^4 \theta_{13} \sin^2 \theta_{23} \approx 1$$

$$\sin^2 2\theta_{\text{react}} \approx \sin^2 2\theta_{13} < 0.1 \text{ (CHOOZ)}$$

Design detectors to measure θ_{solar} and θ_{atmos} (θ_{12} , θ_{23} , θ_{13}).

Complementary Properties of Reactors and Accelerators

E_v~few MeV

•Can probe very small Δm²

With $E_n \sim 5 \text{MeV}$, probe $\Delta m^2 \sim 10^{-3}$ with $L \sim 1 \text{km}$

- •Disappearance only ﴿

 fair sin²2θ

 sensitivity

 •Disappearance only ﴿

 10-4
- 4π source
 - → detector mass grows with L²

E_v~few GeV

•Good mass sensitivity requires very large L

With $E_n \sim 5 \text{GeV}$, probe $\Delta m^2 \sim 10^{-3}$ with $L \sim 1000 \text{km}$

- Produce μ and τ
- Appearance measurement possible
- (More) collimated beam

Reactor Based Experiments

- Isotropic source of \overline{v}_e (3 GW_{thermal} 6•10²⁰ \overline{v}/s) >99.9% of v are produced by decay chains from fissions in ²³⁵U, ²³⁸U, ²³⁹Pu, ²⁴¹Pu
- Calculations of anti-neutrino spectrum well developed: simulations and measurements
 - Flux calculations to few percent.
- Measure inverse beta decay: $\overline{V}_e + p \rightarrow e^+ + n$
 - Cross section 100 x neutrino scattering
 - Characteristic signature including coincidence measurement
- Backgrounds from radioactivity are a challenge
- Careful calibrations needed for detector efficiency

The Anti-neutrino Spectrum

So in practice only ~1.5 neutrinos/fission can be detected above threshold

Palo Verde Reactor Experiment

Segmented detector study v_e - n angular correlations

Investigate v_e - v_x oscillations Fiducial volume 12 tons Gd loaded liquid scintillator

Reactor 1, 3: L=890 m

Reactor 2: L=750 m

CHOOZ Reactor Experiment

Investigate v_e - v_x oscillations

1 km baseline

Reactor 1: 998 m

Reactor 2: 1115 m

Compare spectrum for

independent analysis.

Inner region: 5 ton Gd loaded liquid scintillator (e^+ and n signals)

Containment region: 17 tons liquid scintillator (*n* signal)

D. Markoff – Terrestrial v Sources

neutrinos detected neutrinos expected

1.01±0.04 Chooz 1.04±0.08 Palo Verde

Conclusion:

Chooz and Palo Verde saw no evidence for neutrino oscillations involving $\overline{v_e}$ down to $10^{-3} \, \mathrm{eV^2}$ \rightarrow Atmospheric neutrino oscillations are mainly $v_u - v_\tau$

Reactor Results

Bemporad, Gratta, and Vogel Reviews of Modern Physics v 74, April 2002

KamLAND: Good Position and Timing

Kamioka Liquid-scintillator Anti-Neutrino Detector

Large flux from 20 reactors stations (70 reactor cores)

Sensitive to LMA MSW parameter space indicated by SNO results for v_e - v_x :

$$<$$
L> ~ 190 km
 Δm^2 ~ 10⁻⁵ eV²
 $\sin^2 2\theta$ ~ 1
 $(\Delta m_{12}^2, \theta_{12})$

Probe solar neutrino matter enhanced mixing parameters with vacuum oscillation conditions.

KamLAND Detector Design

•Scintillator 80% Mineral Oil 20% pseudocumine 1.5 g/l PPO

•30% photocathode coverage

1325 fast 17" PMTs 544 large area 20" PMTs

•Water Čerenkov veto detector

225 large area 20" PMTs

•Multi-hit, deadtime-less electronics

Anti 20" PMTs Kevlar Suspension Rope Tyvek Sheet/ 18m Stainless Tank 17"/20" inner PMTs Rock Wall/ PE sheet/ Radon Blocking Resin/ Tyvek reflector **PET Black Sheet** EVOH/3Nylon/EVOH 13m Balloon Acrylic Sphere (3mm t) Fiducial Volume for Reactor Neutrinos (600t) Fiducial Volume for

Solar Neutrinos (450t)

KamLAND Construction

Installation of the Inner Detector

View of the balloon supported by kevlar ropes.

KamLAND Neutrino Event Candidate

Prompt (e^+) Signal E = 3.20 MeV

 $\Delta t = 111 \mu s$ $\Delta R = 34 cm$ Delayed (neutron) Signal E = 2.22 MeV

Spectrum Distortion

Neutrino oscillations change both the rate and energy spectrum of the detected events.

Heilbronn Proposal

If KamLAND does not see oscillations.....

Sensitivity to "HLMA" High LMA region with $2x10^{-4} \, eV^2 < \Delta m^2 < 10^{-3} \, eV^2$

Saltmine: 480-640 mwe

Select baseline to 2 reactors 14 to 20 km

Liquid scintillator 100-1000 kton, depending on needed sensitivity

Spectrum distortion for proposed HLMA project

hep-ex/0203013

Accelerator Based Experiments

High intensity neutrino beams

$$p + \text{target} \rightarrow \pi, K \rightarrow \nu_{\mu}, \overline{\nu}_{\mu}, (< 1\% \nu_{e})$$

Detect by charged current weak interaction

$$v_i + N \rightarrow i + X$$
 where $i \equiv e, \mu, \tau$

- Sensitivity to v_{τ} through τ decay
 - track kinks or kinematics
- Near and far detectors
- Large spectrometers and calorimeters for momentum, energy and track reconstruction

NOMAD and CHORUS

Neutrinos from CERN (SPS protons on Be) Average $E_v = 26 \text{ GeV}$ L~800 m - Search in large Δm^2 region.

Neutrino Oscillation MAgnetic Detector

Target and drift chamber: fiducial mass 2.7 tons Identify τ events using kinematic criteria Requires particle ID and momentum of secondaries

CERN Hybrid Oscillation Research apparatUS

Identify τ events through track "kinks"
770 kg emulsion and scintillating fiber trackers
Measure track momenta with spectrometers
Energy from Pb scintillating fiber calorimeter

 $V_{\mu} \rightarrow V_{\tau}$ NOT SEEN

at large Δm^2 $P_{\mu\tau} < 4x10^{-4}$

LSND and KARMEN

Appearance measurement of v_e -bar.

LSND v from LAMPF accelerator.

KARMEN v from ISIS synchrotron.

Decay in flight: $V_{\mu}: \pi^+ \to \mu^+ + V_{\mu}$

Decay at rest: $\overline{V}_{\mu}: \mu^+ \rightarrow e^+ + \overline{V}_{\mu} + V_e$

LSND Result

Signal above background:

87.9±22.4 ±6.0 events

Oscillation probability:

 $(0.264 \pm 0.067 \pm 0.045)\%$

(Phys Rev D **64** 112007)

Evidence for v_{μ} - v_{e} oscillation at large Δm^{2} and small $\sin^{2}2\theta$. Some consistency with KARMEN results.

.3 eV²< Δm^{2} <2 eV²

NuFact02 - July 2002

D. Markoff – Terrestrial v Sources

Oscillation Evidence

ТҮРЕ	MIXING	δm^2	sin ² 2θ
Atmospheric	$\nu_{\mu} \to \nu_{\tau}(\text{not}\nu_{e})$	$\sim 10^{-3} \text{ eV}^2$	~ 1
Solar	$ u_e \rightarrow \nu_\mu, \nu_\tau $	10^{-5} - 10^{-4} eV ²	~ 0.8
Reactor (limit)	$\overline{ u}_e ightarrow \overline{ u}_\mu, \overline{ u}_ au$	$> 10^{-3} \mathrm{eV^2}$ $< 10^{-3} \mathrm{eV^2}$	< 0.1 LMA
LSND	$\overline{ u}_e ightarrow \overline{ u}_\mu$	$\sim 1 \text{ eV}^2$	~ 0.01

Atmospheric Anomaly

Solar Neutrino Deficit

Oscillations Not Seen

Observed Oscillations

Can we develop a consistent and complete description of neutrino oscillations?

Consider 3 v mixing: $\Sigma \delta m^2 = \delta m_{12}^2 + \delta m_{23}^2 + \delta m_{23}^2 = 0$

But: $\delta m_{\text{solar}}^2 + \delta m_{\text{atmos}}^2 + \delta m_{\text{LSND}}^2 \neq 0$

Consider 4 v mixing: sterile neutrino? Consider CPT violation? What are the mixing parameters?

Be clever with terrestrial source experiments to check parameters.

K2K: Long Baseline Neutrino Experiment (KEK E362)

- Beam energy: $E_v = 1 \sim 2 \text{ GeV}$
- Beam: ~6x10¹² protons/2.2 sec,
 1.1 μsec spill time
- Path length: 250 km,
- Beam aiming accuracy: ~1 mrad
- Beam half-width: ~3 mrad
- Rate: ~200 events at SK for 10²⁰ protons on target at KEK
 - → 2.4x10⁻⁵ events/full-intensity spill
- Background: 5 atmospheric neutrino events/day in SK
 - \rightarrow P(BG)=6x10⁻¹¹ per spill

Near Detector Hall:

1 kT Water Cherenkov detector

Fine-grained detector (FGD):

Sci-Fi detector (SciFi)

Pb Glass (PBG)/ Veto walls

Muon Range Detector (MRD)

K2K results

- Inconsistent with no-oscillations (~99% CL)
 - Events observed in SK: 56 Expected (no-osc): 80.1 (+6.5/-5.4)
- Generally consistent with Super-K best-fit oscillation parameters
 - Best-fit point : $\Delta m^2 = 2.7 \times 10^{-3} \text{ eV}^2$, $\sin^2 2\theta = 1.0$
 - Starting to have enough statistics to see spectrum distortion

K2K Status and Future

- Need more data to reach high confidence levels
- Rearrange surviving tubes + on-hand spares to provide ~50% of original coverage (July-Sept 02)
 Reduced coverage is OK for K2K and atmospheric v
 Hamamatsu can supply sufficient PMTs for full coverage over ~3 years
- Begin data taking again in January, 2003
 - Additional K2K beam time planned for '04, perhaps early '05
 - KEK PS will shut down in '05: move HEP to JHF
 - JHF v beam line (design effort underway)
 - JHF2K collaboration (organization underway)
 - Super-K upgrade (replacement of missing PMTs): '05?

BooNE: Booster Neutrino Experiments

Designed to measure same parameter space as LSND.

MiniBooNE at FNAL $v_{\mu} - v_{e}$ appearance search $\overline{v}_{\mu} - \overline{v}_{e}$ appearance search

 E_v 300 MeV – 1.5 GeV 440 m dirt path

1220 PMTs from LSND 330 PMTs new for veto

Detector filled with oil Calibrations in progress... Beam on detector soon?

Accelerator Projects (Long Baseline)

Sensitive to Δm_{23}^2 , θ_{23} ν_e appearance: $\sin^2 \theta_{13}$

- FermiLab to Soudan (NuMI MINOS)
 - $<E_n> = 3,6,12 \text{ GeV} \quad L\sim730 \text{ km}$
- CERN to Gran Sasso Neutrino Beam (CNGS)
 - OPERA and ICARUS
 - Sensitive to v_{μ} -> v_{e} , v_{τ} appearance
- JHF2K (SuperK)
 - beam v_u , v_e , v_e -bar, Emean~0.51 GeV
- BNL Proposal (Superbeam Project)
 - Send v beam to Homestake (3000 km) study sign of Δm_{23}^2

Fermilab NuMI and MINOS - 2004

Identify: CC ν_{μ} , ν_{e} events NC ν_{μ} events

(Direct measurement of v vs v-bar oscillations.)

NuMI tunable beam: adjust horns and target to change energy spectra for oscillation parameters of interest.

D. Markoff – Terrestrial v Sources

CNGS: OPERA and ICARUS – 2006 (CERN to Gran Sasso)

Measure τ appearance events: $\Delta m^2 \sim 2x10^{-3} \text{ eV}^2$ sensitivity 10%. $(\nu_{\mu} - \nu_{\tau})$ Highly grained detectors: ν_e appearance measurement $-\theta_{13}$. $(\nu_{\mu} - \nu_e)$

ICARUS: Imaging Cosmic and Rare Underground Signals (ICANOE)
Liquid argon imaging detector and
fine-grained magnetized calorimeter

OPERA: Oscillation Project with
Emulsion tRacking Apparatus
Emulsion cloud chamber concept:
detect τ by decay topology

How do we extend the current limits?

The next step in terrestrial neutrino sources:

Look to Neutrino Factories!