

Review of North American

Neutrino Factory R&D

Michael S. Zisman CENTER FOR BEAM PHYSICS

NUFACT02-London July 1, 2002

- Introduction
- R&D program activities
- MICE activities
- Summary

- For purposes of this talk, "North American" will be interpreted to encompass only the work of the U.S. Muon Collaboration (MC)
 - this reflects pragmatism, not a geopolitical viewpoint!
- MC is attacking Neutrino Factory R&D problems on a broad front
 - also exploring Muon Collider issues
 - many of which are common to Neutrino Factory
- Much has happened since NUFACT01
 - went through "B&B" process (HEPAP Subpanel) and got positive response
 - Snowmass response to our effort also encouraging
 - support for neutrino physics (lower priority than LC e⁺e⁻ physics)
- Most recent MUTAC review (October '01) was very favorable
 - they could see the progress

 B&B report supportive of accelerator R&D in general, and muon accelerator R&D in particular

<u>RECOMMENDATION 5</u>:

We recommend that vigorous long-term R&D aimed toward future high-energy accelerators be carried out at high priority within our program.

2.5.1 Scenarios with an Onshore Linear Collider

Significant U.S. participation in the worldwide neutrino program, possibly including use of a new proton decay detector

2.5.2 Scenarios with an Offshore Linear Collider

A major new neutrino facility in the U.S., with significant international participation, as part of the worldwide neutrino program. The facility might be coupled with a new proton decay detector

A focused accelerator R&D program aimed at future accelerator facilities, such as a very large hadron collider or a multi-TeV lepton collider

5.4 Accelerator R&D

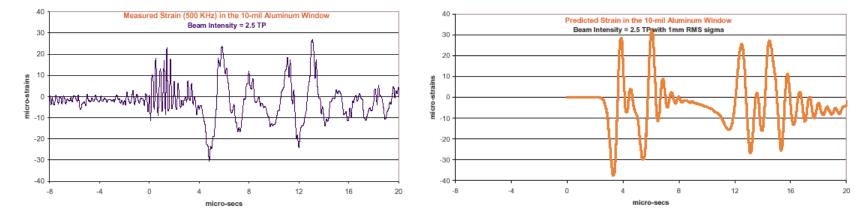
We give such high priority to accelerator R&D because it is absolutely critical to the future of our field. ... As particle physics becomes increasingly international, it is imperative that the United States participate broadly in the global R&D program.

- Hardware development remains major focus (and major expense) for MC
 - simulations are also important (and comparatively cheap)
 - Study-II did us a lot of good at MUTAC and Snowmass
 - ring cooler studies also have potential for improved designs
- MICE activities are becoming a significant part of MC program
- Here, I will summarize progress and describe current activities

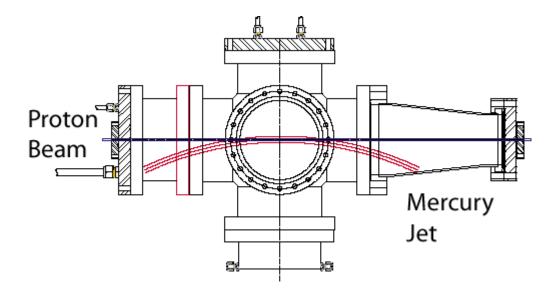
- Targetry (McDonald)
 - initial beam tests of target (solid and liquid) completed
 - both C rod and Hg jet studied at AGS (24 GeV)
 - C-C composite gives lower beam stress; may be okay at 4 MW
 - limit may be radiation damage or sublimation losses
 - C sublimation tests performed at ORNL (Haines)
 - results predict 1 month lifetime at 1.2 MW
 - He atmosphere should increase lifetime
 - tests of this under way

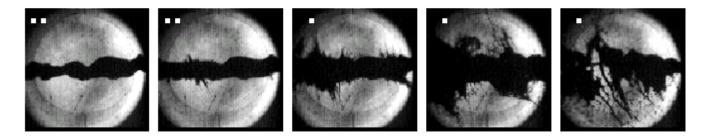
R&D Program Activities

- Hg jet appears to work as expected
 - dispersal happens well after the proton pulse and droplet velocities are reasonable (tens of m/s)
- open questions for Hg jet: injection into $\approx\!20$ T field and nonlinear jet dynamics at full proton intensity
 - designing test magnet to permit experimental study of its effects
 - upgrading AGS extracted beam intensity (goal is 1.6×10^{13} ppp)
 - designing Hg jet system capable of required 20–30 m/s velocity
- continuing simulation program to predict and interpret effects

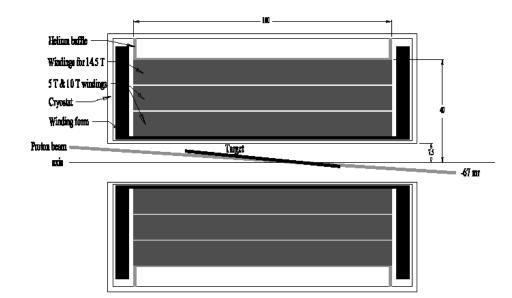


• Target mover and C target assembly in the A3 line at BNL (H. Kirk)





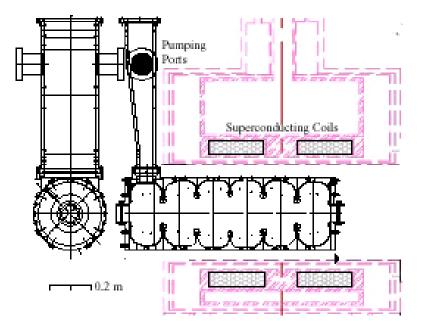
• Mercury-jet target tested at BNL


1-cm-diameter Hg jet in 2e12 protons at t = 0, 0.75, 2, 7, 18 ms.

• Concept for test target solenoid (5, 10, 14.5 T capability) (MIT)

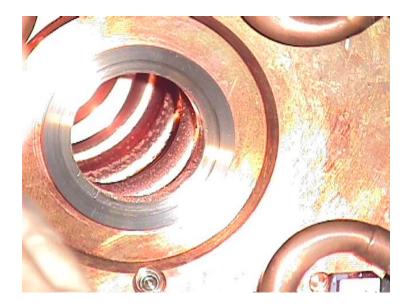
	Units	Case#1	Case #2	Case #3
Peak on-axis field	Т	5.0	10.0	14.5
No. of 0.54 MVA power supplies		1	4	4
Mode of ganging supplies		none	2 x 2	2 x 2
Initial temperature	K	84	74	30
Number of turns utilized		1200	1200	1800
Charge time	sec	7.2	6.3	15.3
Temperature rise at end of pulse	К	5.8	21.7	48.3
Cumulative heating at end of pulse	MJ	2.7	9.1	15.2

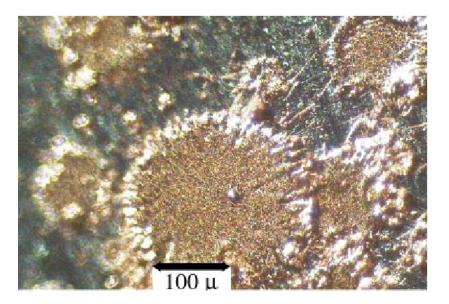
- · Cooling
 - much of the MC activity falls under the MUCOOL heading (Geer)
 - includes R&D on rf cavities, absorbers, solenoids, ring coolers
 - experimental rf work to date being done at 805 MHz; 201 MHz cavity is designed, but fabrication has not begun
 - issues include breakdown and dark current suppression
 - these limit usable gradient
 - absorber work going on in Illinois (ICAR supported) and Japan (U.S.-Japan funding)
 - U.S. focus: development and testing of thin windows; engineering of fluid flow and cryogenics
 - goal is to test absorber (in solenoid) 1 year from now
 - consideration of LH₂ safety has begun (proximity to "ignition source" likely means containment windows seen by the beam)


- solenoid work is aimed mainly at cost and reliability issues
 - designs challenging but not beyond the state of the art
- experimental program on cooling complemented by simulation work
 - exploring ideas to optimize performance and reduce costs
 - looking at rf bunching and phase rotation to replace induction linacs assumed in Study-II
 - working on "ring coolers" to provide 6D emittance reduction
 - working on MICE simulations as benchmark for interpreting results

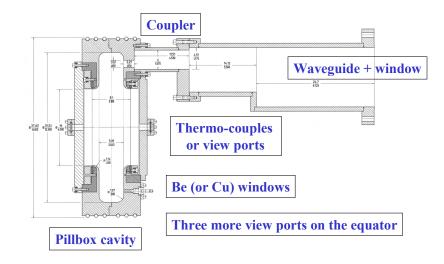
R&D Program Activities

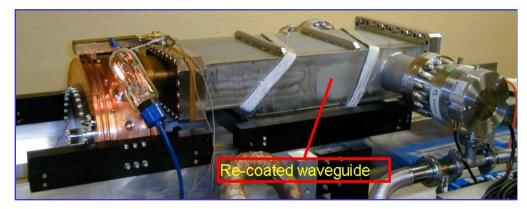
- Open-cell 805 MHz cavity reached 24 MV/m accelerating gradient (53 MV/m peak surface field) (Moretti)
 - note that cavity is only partially in the magnetic field, making interpretation of results more difficult



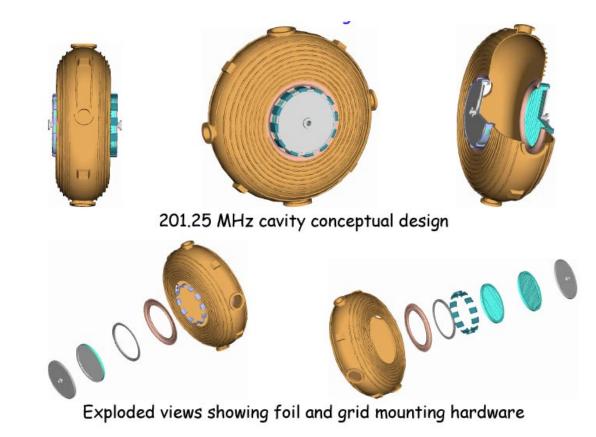


 $\boldsymbol{\cdot}$ Iris damage and corresponding copper deposition on window observed



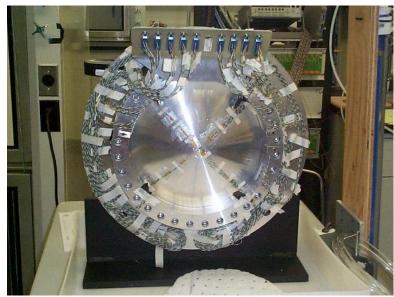


- Now focusing on pillbox cavity having replaceable windows (or grids) (Li)
 - cavity reached 34 MV/m (goal was 30 MV/m)

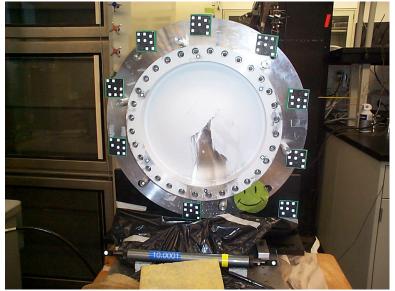


- Dark currents found to be very large ($\propto E^{10}$) (Norem)
 - now preparing for dark current studies with pillbox cavity
 - requires thinner foil and exit window
- Dark current results for open-cell cavity documented (MC Note 235)
 - workshop planned at Fermilab next year, in conjunction with LC
 - this issue has implications for MICE
- Plan to study cleaning and coating techniques, initially using replaceable windows to modify cavity properties

• 201 MHz rf cavity design is well along (Rimmer, Li, Ladran)

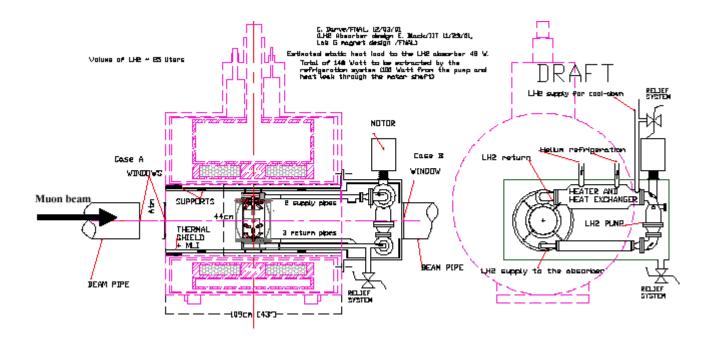


— options for both stepped Be windows and grids are available

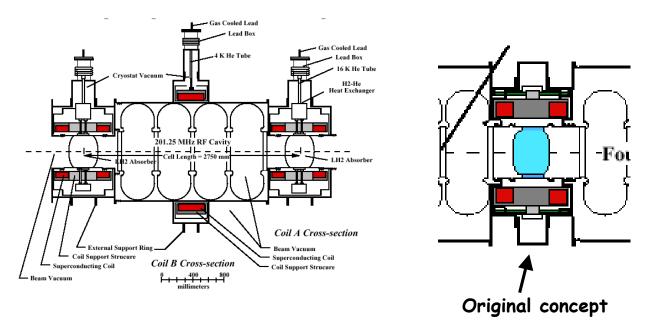


- Absorber work focused initially on thin window fab (Cummings, Kaplan)
 - windows as thin as 125 μ m machined from solid Al (Summers)
 - testing involves breaking them (on purpose) at NIU (Cummings)
 - $_{\rm o}$ 125 $\mu{\rm m}$ window breaks at 3 atm, 340 $\mu{\rm m}$ window at 8 atm
 - goal is to verify FEA calculations (LH₂ safety requirement)

Window outfitted with strain gauges

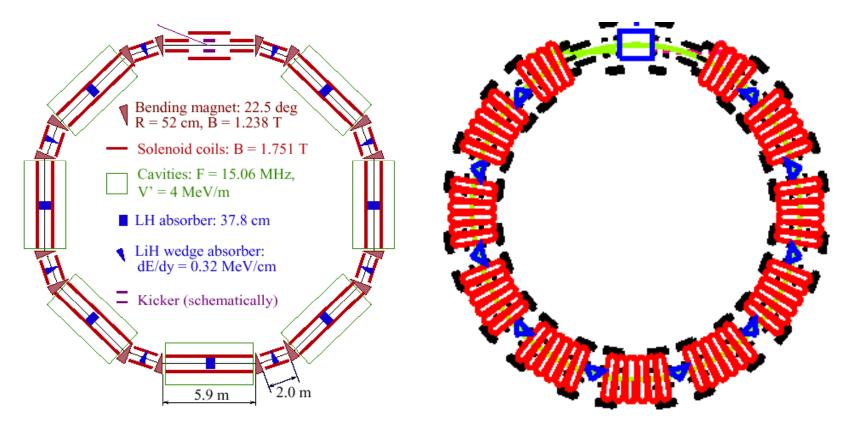


Rupture of 340 μ m window


- First forced-flow absorber design under way (Black)
 - compatible with bore of existing Lab G solenoid

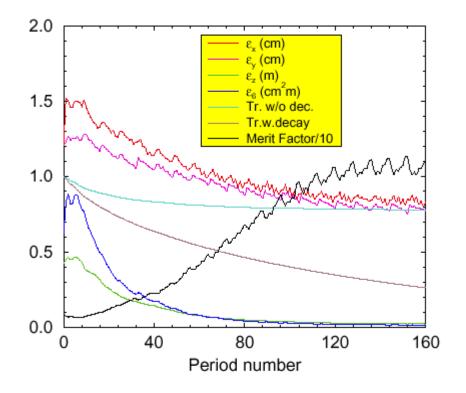
- Solenoids (Green)
 - evaluating design with integrated absorber (cheaper and easier)

- other issues related to mechanical engineering and operational aspects
 - e.g., quench effects for adjacent, opposite-polarity solenoids
- initial evaluation of failure scenarios will begin (in context of MICE)


- Simulations
 - created separate group to focus on ring coolers (R. Raja)
 - bringing nonlinear dynamics experts into the fray (via ICAR+NSF)
 - emittance exchange/ring coolers important due to potentially significant payoff (Neutrino Factory and/or Collider)
 - highest priority: develop technically feasible design
 - revisiting use of FFAG for acceleration system
 - workshop planned at LBNL October 7-18 (Berg)

R&D Program Activities

- Ring cooler permits 6D cooling...on paper (Balbekov; Palmer)
 - based on wedge absorbers in dispersive regions of a ring


Dipole ring (Balbekov)

Bent solenoid ring (Palmer)

 Performance looks interesting...if we can figure out how to inject and extract beam

Injected beam: Transverse emittance 1.21 cm Longitudinal emittance 42.6 cm 6D emittance 62.6 cm³.

The beam after 20 turns: Transverse emittance 0.80 cm Longitudinal emittance 2.3 cm 6D emittance 1.49 cm³ Transmission without decay 77.8% Transmission with decay 26.3% Merit factor 11.0

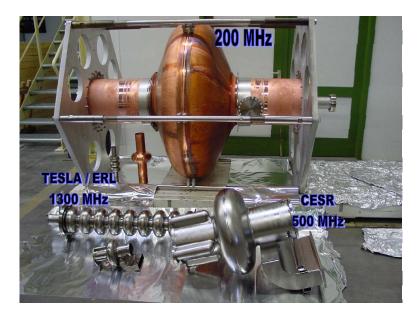
- Idea for full-aperture kicker exists (Palmer, Reginato)
 - but implementation looks expensive

<u>R&D Program Activities</u>

- To test hardware, building MUCOOL Test Area at Fermilab (Popovic)
 - absorber, solenoid, and 201 MHz rf cavity will be integrated here

Original area

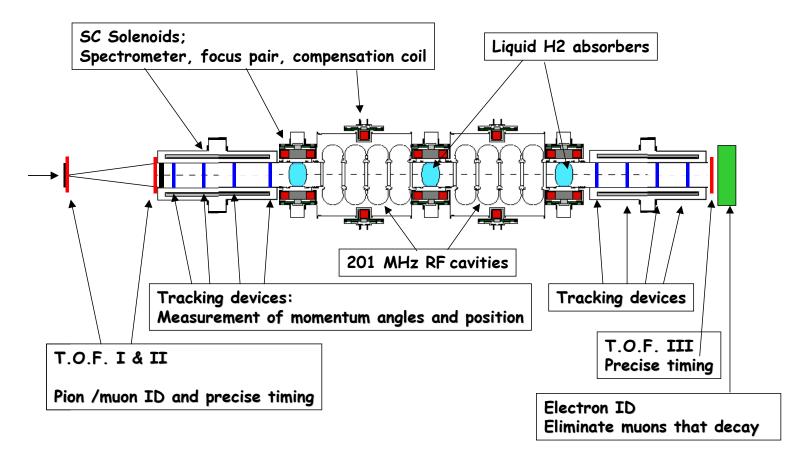
Present area



What it will look like when completed

- 201 MHz SCRF cavity for acceleration system under test at Cornell (Hartill, Padamsee)
 - cavity fabrication completed in collaboration with CERN
 - first result: <mark>3 MV/m</mark>, limited by power cable arc
 - Q is 10¹⁰ at low field
 - developing designs for ancillary items (input coupler, HOM coupler, tuner) based on existing experience, e.g., KEKB

- Motivation for MICE
 - require ionization cooling to build a high-performance Neutrino Factory ($\approx 4 \times 10^{20} v_e$ aimed at far detector per 10^7 s year)
 - Muon Collider demands even higher performance
 - straightforward physics, but not experimentally demonstrated
 - prudence dictates a demonstration of the key principle
- MUTAC made strong recommendations on MICE at October review
 - encouraged international R&D approach
 - experiment is considered "crucially important demonstration"
- MC is participating in MICE planning and organization
 - Kaplan (U.S. Spokesperson), Geer, and MZ on steering committee
 - Bross, Cummings, Green, Norem, Palmer, Li, Spentzouris are Technical Conveners



- Cooling demonstration implies:
 - development and testing individual components with challenging operating specifications (done by MUCOOL, "outside" of MICE)
 - showing these components can function properly in close proximity
 - showing that a realistic system can reduce the emittance of muons
- Other requirements
 - show that our design tools (simulation codes) are in agreement with experimental observations
 - important to gain confidence in our ability to optimize the design of an actual facility
 - we test section of "a" cooling channel, not "the" cooling channel
 - simulations are the means to connect the two

• Baseline option uses 201 MHz (talk by Edgecock, Friday)

- Anticipated U.S. contributions to MICE: rf cavities, absorbers, focusing coils, simulation studies
- RF cavities
 - planned 201-MHz MUCOOL cavity serves as MICE prototype
 - design done; awaiting construction funds
- Absorbers
 - absorbers being developed for MUCOOL are directly applicable for MICE
 - expect to test both forced-flow (U.S.) and convection-cooled (Japan) designs
 - both should be ready for testing in 1 year
- Solenoid coils
 - U.S. expected to be responsible for "focusing coil" pair
 - tight integration with absorber makes this desirable

- Simulation studies
 - safety implications of LH_2 have led to considering merits of alternative absorber approaches
 - Palmer, Fernow, and Gallardo evaluated both MICE experiment and Study-II channel for LH₂, LHe, and LiH absorbers
 - LH₂ assumed to require additional safety window, twice the thickness of containment window (probably pessimistic)
 - LHe used in standard absorber configuration (adjusted for same dE/dx)
 - LiH was taken as uncoated, again adjusted for same *dE/dx*
 - with these assumptions, performance from all three nearly identical
 - LH₂ still best...but not by much
 - understandable, as neither MICE beamline nor Study-II channel operates near equilibrium emittance
 - improved (thinner) windows make LH₂ more attractive

-for MICE

Material	L1	L2	L3	Q(mats)	$\epsilon_{\rm equilib}$	rate
	$^{\mathrm{cm}}$	$^{\mathrm{cm}}$	$^{\mathrm{cm}}$	mm mrad/cm	$\mathbf{m}\mathbf{m}$	$\%/{ m m}$
At Start	$\beta =$	$0.4 \mathrm{m}$		$\epsilon_o = 8.9$	mm	
1) H2 only	19.3	0.000	0.000	38.0	1.29	1.95
2) H2 + rfw	18.0	0.000	0.125	47.5	1.61	1.86
3) H2 + Al + rfw	17.5	0.036	0.125	53.3	1.81	1.81
4) H2+Al+Safety+rf	16.4	0.108	0.125	64.9	2.20	1.71
5) $He + Al + rfw$	20.7	0.036	0.125	65.5	2.22	1.71
6) Li H + rfw	3.9	0.000	0.125	76.2	2.58	1.61

- and for Study-II channel

Material	Ave. μ/p
1) H2 only	$.162\pm.06$
2) H2 + Al	$.153\pm.06$
3) H2 + Al + rfw = FS2	$.143\pm.04$
4) H2+Al+Safety+rf	$.132\pm.02$
5) He + Al + rfw	$.127\pm.02$
6) Li H + rfw	$.128\pm.02$

- MC program has made excellent progress on all fronts in the past few years
- Strong interest in U.S. to continue to build upon present technical progress
- MC is part of strong international effort for MICE
 - expect to provide hardware and participate in simulation effort
 - new funding sources need to be identified to provide components
- MC and its interaction with colleagues worldwide is viewed in the U.S. as "model" for working on major international projects
 - together, we must continue the good work!

Contact information

MC homepage:

http://www.cap.bnl.gov/mumu/mu_home_page.html

MC notes listing:

http://www-mucool.fnal.gov/notes/notes.html