Working Group Three

Non-Oscillation Neutrino Physics: Physics and Detector

Andrei Kataev Shunzo Kumano Kevin McFarland

 $\begin{array}{c} NUFACT~2002 \\ 1^{st}-6^{th}~July~2002 \end{array}$

Role of Non-Oscillation ν Physics

ullet Exploit exponential growth of u

Beam	$\langle E_{\nu} \rangle$ [GeV]	ν flux per year
NuTeV/CCFR	100	$\sim 10^{14}/{\rm m}^2$
CHORUS/NOMAD	30	$\sim 3 \times 10^{15}/\mathrm{m}^2$
MINOS Near LE	5	$\sim 3 \times 10^{16}/\mathrm{m}^2$
MINOS Near HE	15	$\sim 10^{17}/\mathrm{m}^2$
Neutrino Factory [†]	12	$\sim 5 \times 10^{19}/\mathrm{m}^2$

 $^{^{\}dagger}$ $\sim 2 \times 10^{20} \mu/\text{yr}$, 20 GeV

- Provide understanding of neutrino interactions crucial for oscillation physics
 - → Measure low-energy neutrino cross-sections (superbeams)
 - → Understand far detector response
 - → Measure backgrounds to oscillation searches
 - ★ CP violation searches will almost certainly be limited by these!

Physics of ν Interactions

QCD Studies with Neutrinos

- → Huge fluxes allow weaning of neutrinos experiments from massive targets
 - * Low Z targets: nuclear dependence, separate νp , νn
 - * Polarized targets: flavor spin SFs
- → Discussions at NUFACT 2002:
 - * Nuclear effects: experiment (NUMI) and theory (Tuesday am)
 - Status and Prospects for polarized and unpolarized nucleon SFs (Tuesday noon, pm)
 - * Higher Twist effects, low Q^2 QCD (Wednesday, am and noon)
 - * DIS Sum Rules, tests of QCD (Wednesday, am and noon)

• "The NuTeV Train Wreck"

- $\hookrightarrow \sin^2 \theta_W^{\nu N}$ far off SM expectation
 - * Physics beyond electroweak? Wacky QCD?
- → Discussions at NUFACT 2002:
 - ★ The measurement (Wednesday pm)
 - * 'Old and New Physics" interpretations (Wednesday pm)

Near Detectors & ν Oscillations (Joint with Working Group 2)

- Why is this important?
 - → This limits our knowledge *today!*
 - $\star \pi^0$ appearance at Super-K $\Rightarrow \nu_{\tau}$?
 - * LSND+SNO+Super-K \Rightarrow '"3+1" scenario, requires ~ 10% ν_{μ} disappearance at LSND!
 - \hookrightarrow Need for knowledge grows more acute with Superbeam ν oscillation program
- Focus here on (mostly) next-generation Superbeams (sub-few GeV, π beams)
 - → Report from the frontiers: K2K and NUMI (Thursday noon, post-coffee)
 - → Phenomenology of Cross-Sections at Low energy (Thursday noon)
 - \hookrightarrow Quasi-elastic and Resonance ν_{μ} and ν_{e} detection (Thursday pm)
 - → Fluxes: absolute and far/near ratios (Thursday pm and post-coffee)
 - → Near detectors for cross-section and flux (Thursday post-coffee)