Working Group Three

Non-Oscillation Neutrino Physics: Physics and Detector

Andrei Kataev
Shunzo Kumano
Kevin McFarland

NUFACT 2002
1st – 6th July 2002
Role of Non-Oscillation ν Physics

- Exploit exponential growth of ν

<table>
<thead>
<tr>
<th>Beam</th>
<th>$\langle E_\nu \rangle$ [GeV]</th>
<th>ν flux per year</th>
</tr>
</thead>
<tbody>
<tr>
<td>NuTeV/CCFR</td>
<td>100</td>
<td>$\sim 10^{14}/m^2$</td>
</tr>
<tr>
<td>CHORUS/NOMAD</td>
<td>30</td>
<td>$\sim 3 \times 10^{15}/m^2$</td>
</tr>
<tr>
<td>MINOS Near LE</td>
<td>5</td>
<td>$\sim 3 \times 10^{16}/m^2$</td>
</tr>
<tr>
<td>MINOS Near HE</td>
<td>15</td>
<td>$\sim 10^{17}/m^2$</td>
</tr>
<tr>
<td>Neutrino Factory†</td>
<td>12</td>
<td>$\sim 5 \times 10^{19}/m^2$</td>
</tr>
</tbody>
</table>

† $\sim 2 \times 10^{20} \mu$/yr, 20 GeV

- Provide understanding of neutrino interactions crucial for oscillation physics

 \leftrightarrow Measure low-energy neutrino cross-sections (superbeams)

 \leftrightarrow Understand far detector response

 \leftrightarrow Measure backgrounds to oscillation searches

 * CP violation searches will almost certainly be limited by these!
Physics of ν Interactions

- QCD Studies with Neutrinos
 - Huge fluxes allow weaning of neutrinos experiments from massive targets
 - Low Z targets: nuclear dependence, separate ν_p, ν_n
 - Polarized targets: flavor spin SFs
 - Discussions at NUFACT 2002:
 - Nuclear effects: experiment (NUMI) and theory (Tuesday am)
 - Status and Prospects for polarized and unpolarized nucleon SFs (Tuesday noon, pm)
 - Higher Twist effects, low Q^2 QCD (Wednesday, am and noon)
 - DIS Sum Rules, tests of QCD (Wednesday, am and noon)

- “The NuTeV Train Wreck”
 - $\sin^2 \theta_W^{\nu N}$ far off SM expectation
 - Physics beyond electroweak? Wacky QCD?
 - Discussions at NUFACT 2002:
 - The measurement (Wednesday pm)
 - ’Old and New Physics” interpretations (Wednesday pm)
Near Detectors & ν Oscillations (Joint with Working Group 2)

• Why is this important?
 → This limits our knowledge today!
 ∗ π^0 appearance at Super-K $\Rightarrow \nu_\tau$?
 ∗ LSND+SNO+Super-K$\Rightarrow'''3+1''$ scenario, requires $\sim 10\% \nu_\mu$ disappearance at LSND!
 → Need for knowledge grows more acute with Superbeam ν oscillation program

• Focus here on (mostly) next-generation Superbeams (sub–few GeV, π beams)
 → Report from the frontiers: K2K and NUMI
 (Thursday noon, post-coffee)
 → Phenomenology of Cross-Sections at Low energy
 (Thursday noon)
 → Quasi-elastic and Resonance ν_μ and ν_e detection
 (Thursday pm)
 → Fluxes: absolute and far/near ratios
 (Thursday pm and post-coffee)
 → Near detectors for cross-section and flux
 (Thursday post-coffee)