Summary of yesterday's WG1 proton driver (4) tracking technique (1) FFAG (5) RLA (2) fast ramping synchrotron (1) (discussion on Saturday's summary)

> S. Machida July 5, 2002

Proton driver (1-2)

- Lattice for 8 and 30 GeV proton drivers (G. H. Rees)
 - ISIS upgrade as 8 GeV 50Hz machine, possibly developed to 4MW.
 - 60 degree cells and cancellation of sextupole in an arc
 - Common gradient magnet with fast trim Q.
 - CERN design of 30 GeV, 8.33Hz machine.
 - 72 degree cells
 - Acceptance of 170 pi mm-mrad with 75 mm bore radius.
 - Total cost are 10% less than SPL.
- Performance studies on transitionless proton driver lattice (C. Johnstone)
 - Definition of two types of transitionless lattices.
 - Missing dipole FODO and strong focusing FMC
 - DA enhancement of a sextupole corrected lattice.
 - It is not true with random errors of Quadrupole magnets.

Proton driver (3-4)

- Proton driver at BNL (**W.T.Weng**)
 - Upgrade of AGS
 - Increase repetition rate: 2s -> 0.4s -> 0.2s.
 - Increase total number of batches from the booster.
 - Beam power: 0.14MW -> 1MW -> 4MW.
 - Another path to 4MW
 - AGS with SCL, plus 2.5 GeV accumulator
 - Tunnel design to shoot a beam from the hill to South Dakota.
- Proton driver in Japan (**S. Machida**)
 - Multi purpose facility, not just for a proton driver.
 - Minimize beam loss or reduce beam power.
 - 4kW for RCS collimator and 7.5kW for 50GeV MR ESS.
 - Major accelerator components of 50GeV MR are already ordered.
 - Two stage path to 4MW.

Tracking technique

- Muon simulations using Boris type algorithms (**G. Penn**)
 - Boris scheme integrate vector and matrix terms separately.
 - Error analysis taking an example of 10T uniform solenoid.
 - Runge-Kutta gives errors proportional to the distance step.
 - Typical speed up of factor 4 compared with R-K.

FFAG (1-2)

- Beam dynamics studies of FFAG (A. Sato)
 - PRISM: FFAG based phase rotator to obtain narrow energy spread of muons.
 - FFAG 3D tracking simulation with GEANT3.21
 - 3D magnet field map generated by TOSCA.
 - Phase rotation using saw tooth RF.
 - POP FFAG studies and status of 150MeV FFAG at KEK.
- Recent FFAG studies (**D. Neuffer**)
 - DIMAD calculation agrees with Japanese design.
 - Non-scaling FFAG by Carol has good linear optics behavior.
 - Dejan's 10-20 GeV FFAG gives stable momentum range of +/-40%.
 - Large geometric aberration.
 - Alternative scenario might be linac up to 1GeV and FFAG 1 to 20 GeV.

FFAG (3-4)

- FFAG with high frequency RF for rapid acceleration (C. Johnstone)
 - High frequency RF option for FFAG accelerator.
 - Single frequency of "over-voltaged" RF with optimized phase of each cavity.
 - An example is that 200MHz and 40% over-voltage cavities with dual harmonics RF gives 5 turn acceleration.
 - Another choice gives10 turns acceleration with 100 MHz RF.
- Ionization cooling in FFAG (H. Schnoeuer and B. Autin)
 - Use 25mm Li absorber as windows in cavities.
 - The ratio of emittance over particle number is improved by 20%.
 - ACCSIM simulation confirmed the simple estimate.
 - It depends on lattice design.

FFAG (5)

- Muon acceleration with FFAGs (S. Machida)
 - Lattice structure is changed from triplet to singlet FODO.
 - Japanese scheme uses 4 FFAG with low RF frequency (a few MHz).
 - Low frequency single harmonic RF gives huge RF bucket.
 - Acceleration is completed with a quarter of synchrotron oscillation.

RLA (1-2)

- Muon acceleration in re-circulating linacs (A. Bogacz)
 - RLA scheme based on 200MHz superconducting linac
 - Three improvements. All suppress the emittance degradation.
 - Smooth transition from the cooler to spreader/recombiner.
 - Making a short section in spreader/recombiner.
 - Optimized linac optics for multi pass beams.
 - Comparison of longitudinal dynamics between RLA and (Dejan's) FFAG.
 - Both shows energy compression.
 - Beam loading is more severe in FFAG.
- Initial tests of 201MHz superconducting cavity (**D. Hartill**)
 - Superconducting cavity development between Cornell and CERN.
 - Cornell test pit construction is completed.
 - Nb/Cu cavity arrives at Cornell and initial tests are done.
 - The first result shows that Q is more than 10^{10} and $E_{acc}=3MV/m$.
 - However, cable burned out.

Fast ramping synchrotron

- Muon acceleration with TESLA RF and fast ramping synchrotrons (**D**. **Summers**)
 - Muon acceleration with very fast ramping synchrotron. An example is that 2 to 20 GeV/c machine with 30 orbits.
 - 1.7T, 400MHz RF gives 84% survival.
 - oriented silicon steel of 10 microns.
 - Peak power is 45MW but average is only 24 kW because of very low duty factor (1/2000).
 - Power source of magnets is 115kV x 81kA, which costs 6 millions.
 - Higher energy accelerators such as 20 to 180 GeV/c and 180 to 1600 GeV/c are also possible.
 - Superconducting RF (TESLA RF) makes sense for higher energy accelerator.