Lattices for 8 and 30 GeV Proton Drivers

G.H. Rees, RAL

Proton Drivers

- 1. ISIS Upgrade
 - ISIS (R = 26 m) \rightarrow New Ring (R = 78 m)
 - 3 GeV @ 50 Hz → 1 MW Spall. Neutron Source
 - 8 GeV @ 50/3 Hz \rightarrow Neutrino Factory R & D

RF system same for both operating modes

Modified magnet P/S for 8 GeV

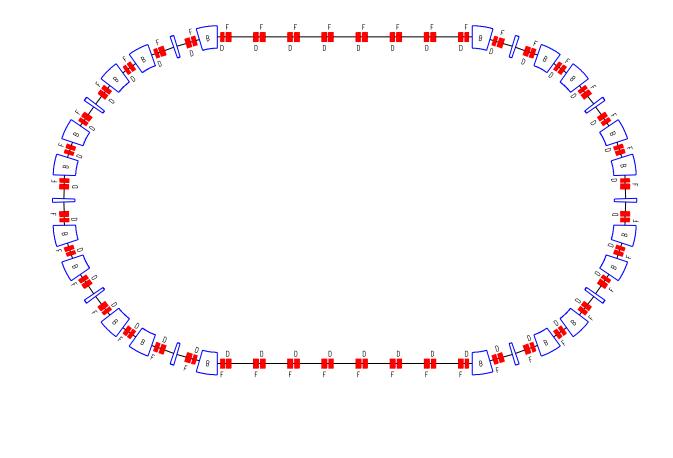
Possibility of developing to 4 MW

2. CERN 30 GeV Driver in ISR Tunnel

Requires combined function magnets in arcs

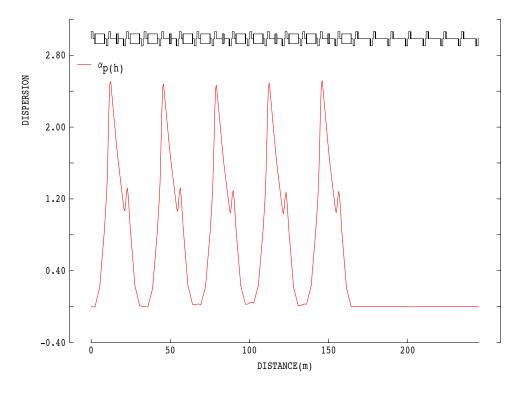
Costs ~ 10% less than SPL / AC driver

Lattice Requirements


1. R = 78.0 m, F = 50 Hz for 8 GeV

R = 151.0 m, F = 50/6 Hz for 30 GeV

- 2. Avoid crossing transition
- 3. Chromaticity and (high energy) α_1 correction
- 4. Careful choice of μ_h , μ_v for sextupoles and tune split
- 5. Large acceptance and dynamic aperture
- 6. Low β_h , β_v and α_p parameters
- 7. Long straights for rf, injection, extraction & collimation
- 8. Common gradients for main quads; fast trim quads


Basis of Lattice Designs

- 1. S(arc) = 5 and $Q_h(arc) = 4$
- 2. Five groups of three cells in arc, $\mu_h = 3 \times 96$
- 3. High γ_t by missing magnets not focusing adjusts
- 4. $\mu_v(arc) = 3 \times 60$ (8 GeV), 3×72 (30 GeV)
- 5. Superperiods = 2 (8 GeV), 4 (30 GeV)
- 6. Tunes = 11.7, 7.4 (8 GeV), 19.32, 14.84 (30 GeV) ↓ ↓
- 7. Resonances, 4 Q_v = 28, 2 Q_v + Q_h = 49 \rightarrow 48 (Δ Q < 1/3)
- 8. Fewer resonances than for 4 groups of 3, 90 cells

ISIS Upgrade

DISPERSION

BETATRON

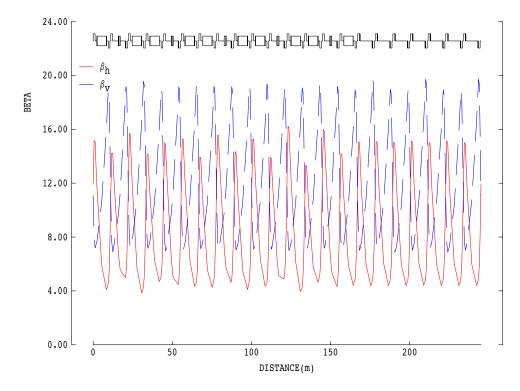
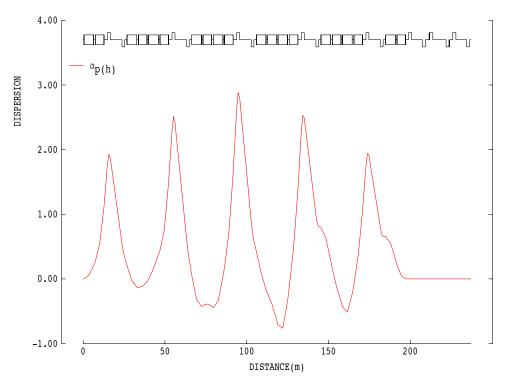



Figure 1: 8 GeV Lattice

BETATRON

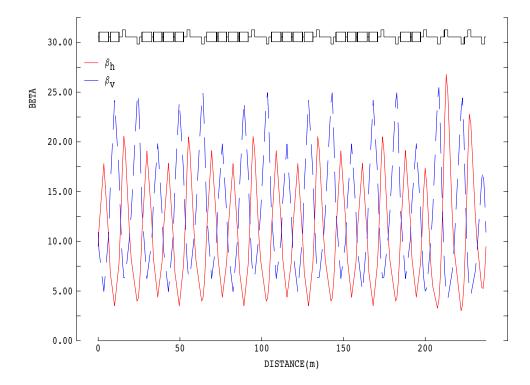
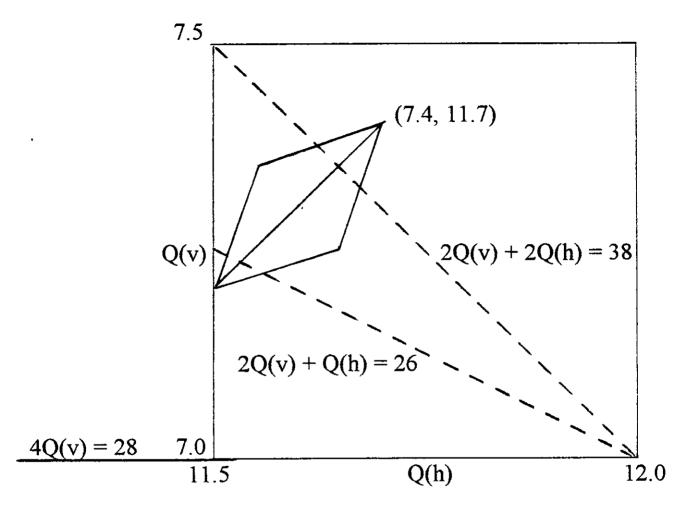


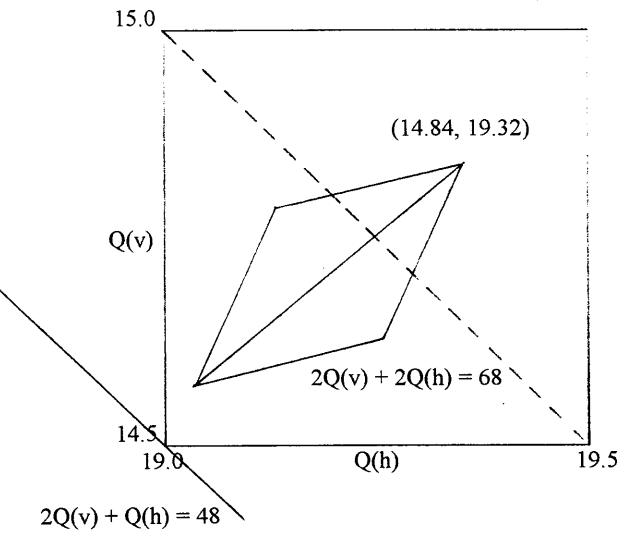
Figure 1: 30 GeV Lattice


8 GeV Lattice Features

- 1. Structure 2 [5 (C1, C2, C1), 7 C3] doublets
- 2. C1, C2 : long, short sector dipoles, resp.
- 3. C2, C3 : missing dipoles
- 4. (C1, C2, C1) : almost achromatic
- 5. $\gamma_t = 13.78$, $Q_h = 11.7$, $Q_v = 7.4$
- 6. β_h < 16.0 , β_v < 20.0 , α_p < 2.5 m
- 7. Max. quad, dipole fields < 0.98, 1.45 T
- 8. Straights 14 @ 7.5 m (α_p = 0)

20 @ 3.23 m

30 GeV Lattice Features


- 1. Structure 4 [5 (C1, C2, C1), C3, C4, C3]
- 2. C1 : combined function BF and BD
- 3. C2, C3, C4 : missing dipole quadrupole doublets
- 4. 5 (C1, C2, C1) achromatic; (C1, C2, C1) not
- 5. $\gamma_t = 40.8$, $Q_h = 19.32$, $Q_v = 14.84$
- 6. $\beta_h < 27.0$, $\beta_v < 25.0$, $\alpha_p < 2.9$ m
- 7. Max. quad and (BD, BF) fields < 1.0, 1.8 T
- 8. Straights : 8 @ 6.6 m, 4 @ 8.1 m (α_p = 0)
 20 @ 7.15 m

8 GeV Lattice (S = 2)

---- sextupole cancellation in arc

---- sextupole cancellation in arc

30 GeV Lattice (S = 4)

Lattice Collimation Requirements

- Momentum collimator (MC) near max. dispersion in arc. (max. normalised dispersion for tapered vacuum walls).
- 2. MC near upstream end of a C2 straight (3.2 m, 8 GeV; 7.1 m, 30 GeV)
- 3. Rectangular apertures needed for beam lost longitudinally.
- 4. Primary and secondary collimators for betatron loss.
- 5. Secondary collectors at ~20, 90, 164 in 3 adjacent straights
- 6. Localization efficiency of ~95% for betatron loss.
- 7. MC downstream of betatron collimation system.
- Collimator acceptance may be larger for rectang. vac. walls (false economy not to use rectangular chambers).

Lattice RF Requirements

- 1. High rf voltages due to rapid cycling.
- 2. Approx. 0.9 MV for 8 GeV, 3.8 MV for 30 GeV.
- 3. Zero dispersion straights: 54 m for 8 GeV, 42 m for 30 GeV.
- 4. Low dispersion regions: 32 m for 8 GeV, 36 m for 30 GeV.
- 5. Using 5 arc cells for 4. gives low synchro-betatron coupling.
- 6. RF: ~3.5 and 7.0 MHz for 8 GeV, 10 MHz for 30 GeV.
- 7. Cavity voltages are relaxed if low dispersion cells are used.
- 8. If not: 22, 1.8 m, 175 kV cavities (Pirkl) for 30 GeV.