Boris Push with Spatial Stepping

G. Penn
UC Berkeley / LBNL CBP

July, 2002
NuFact 02
Imperial College, London



BERKELEY LAB

e Boris particle push

o Spatial Boris Push Equations

« advantages of Boris push

o Stability and Accuracy

e Comparison with Runge-Kutta

Outline ﬁ%(’(

Muon Collaboration

-
\
Freeroerer ‘|




. )
ceceeed] B Boris Push o
I\/Iuo?:‘zl(abgation

The Boris push is commonly used in plasma physics ssimulations
because of its speed and stability.

It uses aleapfrog scheme, where the particle is moved, then half of the
energy changed is applied.

After this, the momentum is rotated by the B field, and the rest of the
energy change applied.

The rotation is automatically energy conserving, and the algorithm is
symmetric to time reversal, which improves the performance.

Second order accurate, but requires only one field evaluation per time
step.

The Boris push israrely used for accelerator ssmulations, becauseit is
more convenient to propagate particlesin z.
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In collab. with P. Stoltz, J. Cary, at Tech-X (& U. Colorado, Boulder)

The spatial Boris scheme exchangesU for p,and t for z

dﬁ? = ¢(E; + v, B, — v, B,)
First, we replace the equation
- - WPy _ (Ey, + v, B; — v, B;)
for pz with the equation for U: PN s et e
dlU/c
(df/ ) - q(EmU:: T Ey’!}y = Ezvz)
. . dp. 1 dp; (Em vy B, )
= e—— = — —_ B
Replacmg_thth Z, R q - + - y
the governing dp, 1dp, (E, v.B, LB )
equations of the spatial dz v, dt ¢ (v_z o, y
Boris scheme are: dU/c _ 1dU/c

dz v, dt -
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For spatial Boris push, the equations separ ate into termsthat
directly change p, and termsthat don’t

— Inthe tempora Boris scheme, the separation is into one piece
that changes U (E-fields) and one that doesn’t (B-fields)

The termsthat directly change p, are E,, B,, and B,

(o) (o B Ese\(wn) [-B
| », || -B. 0 E,/c py | T4 By
\U/r:) \Em/c E,/ec 0 ) \U/r:) \Ez/ﬂ)

d
For simplicity, rewrite: d_w = Mw+b
z
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The Borisschemeintegrates vector and matrix terms separately

The Boris scheme says Az
first push the vector term w =uw"+ Tb
one-half step: This step isimplicit
and reguires some
Then push the matrix term afull step: more massaging
wr—w =M (w+ ; w ) Az

Finally, push the vector w't! = wt + gb

term the final half step: =
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Step-centered push of matrix term is 2nd-order accur ate

Because M |Is constant,
a step-centered scheme
will be 2nd-order accurate

'|+ 7
wr—w =M (*m ;Lw ) Az

Az\ ! Az
Solving for w gives;,  w™ = (I - ,M?) (I + M?) w
= (I+R) w,
((2:(5-B?) B +REE L s )
R = q":";!lrp: sl gAz E-Ey gAz E’; - B2 Ey gz B.E,
1 4 £4as (Bz i ) p: © s \© 2 e Ip: c
"Fﬁ 4 ot . 2 2
E, , gA:B.E, E Az B,E, ¢gA: (E E
l\\ T + 2p C _-rt'l + 2p - 2p (-r + r_'zl) )I
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___________________________ Boris. push the
. Evaluate Fields —> Vector term

/v one-half step
Start | Leap-frog: push
—* thepositions
one-half step Boris: push the
matrix term a
L eap-frog: push full step
<«———| thepositions /
End | one-half step

Boris. push the
vector term the

final half step
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Spatial motion is calculated a 1/2 step off from momentum/energy
evolution:

o typically, useleap-frog
e INnICOOL, split into two half-steps,
before and after evolution of w.

~_ ., BorisPushspeedsup .M
B 11744

Felds are only evaluated once, where momentum kick is applied

o compared to 4 field evaluations for RK

» l|ocal effect on particle, so amost indep. of coordinates

o track asif no field, then replace Az with separation between planes
(now afunction of transverse co-ords)

Asin RK, assumes small energy loss per step.
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— except ionization energy |loss, scatter, are applied at end of step

Second-order conservation of energy

 also canonical momentum when applicable

e robust for large stepsizes

Errors tend to average out

* in RK scheme, errorswill slowly accumulate

Both schemes work well for small phase advances, but Boris push
ISsimpler to calculate

o especialy if field calculations are expensive

» lesssavingsfor curvilinear (where even field-free is complicated)
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Comparison of Runge-Kutta with Boris, for conserved quantities:

Runge Kuttais approx fifth order accurate (specia case, solenoid?)
tendsto yield slowly increasing errors.
Boris push only second order, but preserves invariants
maximum error, e, reached in 1 betatron oscillation (or cell period)
Relevant length scaleisL, step SizeisA

RK:e~R, (Ax/L)z/L note exponent = 5, not 4
Boris: max e ~B, (Ag/L)?
with 4 x more field calculations per step for RK,

Borisisfaster when acceptable to have e > B,*? R;%3 (L / 2)%3
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10 T Uniform Solenoid — conserves P,

40 cm for 1t phase advance: after 400 m, crossover point IS
e~2x10°

well below fluctuations for an ensemble of ~ 10° particles

Muon Collaboration

FOFO lattice:
1 m half-period with B=2 T, P=200 MeV/c
well above cutoff momentum
after 400 meters, crossover point isroughly the same, e ~3 x 10

For minimum step sizes fixed by other concerns (e.g., scattering),
Boris step is4 x faster and may still be more accurate
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FOFO: relative error in angular momentum
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FOFO: relative error in angular momentum (log-log)
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relative error
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Solenoid: relative error in P[] (log-log)
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— 5th order fit
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Solenoid: relative error in Larmor period (log-log)
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Solenoid: relative error in Larmor period (log-log)
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