from charged—current deep-inelastic scattering Polarized parton distributions and future neutrino factories

Department of Physics, Blackett Laboratory Neutrino Factory Workshop 2002 Imperial College, London 1^{st} to 6^{th} July 2002

Giovanni Ridolfi - INFN Sezione di Genova

 $(in\ collaboration\ with\ S.\ Forte\ and\ M.\ Mangano)$

of C-even polarized parton distributions Inclusive neutral-current polarized DIS experiments only allow a measurement

$$\Delta q^+ = \Delta q + \Delta \bar{q}$$

- Flavor separation: difficult (weak sensitivity to Δs)
- Quark-antiquark separation: impossible

No polarized charged-current experiment performed so far:

- with neutrino beams: too large polarized target needed
- with electron or muon beams: too high energy required (a possibility for polarized HERA)

An interesting possibility:

sections of the accumulator of a muon storage ring highly focused neutrino beams arising from the decays of muons along straight

nucleon in terms of individual (spin-averaged and spin-dependent) flavor This would allow an accurate decomposition of the partonic content of the

More on neutrino factories:

- muon storage rings, BNL-67404. I. Bigi et al., The potential for neutrino physics at muon colliders and dedicated high current
- QCD/DIS Working Group, to appear in the Report of the CERN/ECFA Neutrino Factory M. L. Mangano et al., Physics at the front-end of a neutrino factory: a quantitative appraisal

Study Group, hep-ph/0105155

Hadronic tensor decomposition:

$$\begin{split} W_{\mu\nu} &= \frac{1}{4\pi} \int d^4z \, e^{iqz} \, \langle p, s | \left[J_{\mu}(z), J^{\dagger}_{\nu}(0) \right] | p, s \rangle \\ &= \left(-g_{\mu\nu} + \frac{q_{\mu}q_{\nu}}{q^2} \right) F_1(x, Q^2) + \frac{\hat{p}_{\mu}\hat{p}_{\nu}}{pq} F_2(x, Q^2) + \frac{i\epsilon_{\mu\nu\alpha\beta}q^{\alpha}p^{\beta}}{2pq} F_3(x, Q^2) \\ &- \frac{i\epsilon_{\mu\nu\alpha\beta}q^{\alpha}}{pq} \left[s^{\beta}g_1(x, Q^2) + \frac{pq\,s^{\beta} - sq\,p^{\beta}}{pq} g_2(x, Q^2) \right] \\ &+ \frac{1}{pq} \left[\frac{1}{2} \left(\hat{p}_{\mu}\hat{s}_{\nu} + \hat{p}_{\nu}\hat{s}_{\mu} \right) - \frac{sq}{pq} \hat{p}_{\mu}\hat{p}_{\nu} \right] g_3(x, Q^2) \\ &+ \frac{sq}{pq} \left[\frac{\hat{p}_{\mu}\hat{p}_{\nu}}{pq} g_4(x, Q^2) + \left(-g_{\mu\nu} + \frac{q_{\mu}q_{\nu}}{q^2} \right) g_5(x, Q^2) \right] \\ &\hat{p}_{\mu} = p_{\mu} - \frac{pq}{q^2} q_{\mu}; \qquad \hat{s}_{\mu} = s_{\mu} - \frac{sq}{q^2} q_{\mu} \end{split}$$

The proton spin vector is normalized as $s^2 = -m^2$

$$\frac{d^2\sigma^{\lambda\ell}(x,y,Q^2)}{dxdy} = \frac{G_F^2}{2\pi(1+Q^2/m_W^2)^2} \frac{Q^2}{xy} \left[-\lambda_\ell y \left(1 - \frac{y}{2} \right) x F_3 + (1-y-x^2y^2 \frac{m^2}{Q^2}) F_2 + y^2 x F_1 \right]$$

$$\Delta \sigma = \sigma(\lambda_p = -1) - \sigma(\lambda_p = +1)$$

$$\frac{d^{2} \Delta \sigma^{\lambda_{\ell}}(x, y, Q^{2})}{dxdy} = \frac{G_{F}^{2}}{\pi (1 + Q^{2}/m_{W}^{2})^{2}} \frac{Q^{2}}{xy} \left\{ \left[-\lambda_{\ell} y(2 - y)xg_{1} - (1 - y)g_{4} - y^{2}xg_{5} \right] + 2xy\frac{m^{2}}{Q^{2}} \left[\lambda_{\ell} x^{2}y^{2}g_{1} + \lambda_{\ell} 2x^{2}yg_{2} + \left(1 - y - x^{2}y^{2}\frac{m^{2}}{Q^{2}} \right) xg_{3} \right] \right\}$$

$$-x \left(1 - \frac{3}{2}y - x^{2}y^{2}\frac{m^{2}}{Q^{2}} \right) g_{4} - x^{2}y^{2}g_{5} \right] \right\}$$

Only g_1, g_4, g_5 survive at leading twist.

A Callan-Gross-like relation holds:

$$g_4(x, Q^2) = 2xg_5(x, Q^2)$$

Only two independent polarized structure functions at leading twist: g_1 and g_5 (true also beyond leading order).

Leading order analysis

In terms of parton densities

$$g_1^{W^+} = \Delta \bar{u} + \Delta d + \Delta \bar{c} + \Delta s$$

$$g_1^{W^-} = \Delta u + \Delta \bar{d} + \Delta c + \Delta \bar{s}$$

$$g_5^{W^+} = \Delta \bar{u} - \Delta d + \Delta \bar{c} - \Delta s$$

$$g_5^{W^-} = -\Delta u + \Delta \bar{d} - \Delta c + \Delta \bar{s}$$

Below charm threshold

$$g_1^{W^+} = \Delta \bar{u} + \cos^2 \theta_c \Delta d + \Delta \bar{c}_{intr} + \sin^2 \theta_c \Delta s$$

$$g_1^{W^-} = \Delta u + \cos^2 \theta_c \Delta d + \Delta c_{intr} + \sin^2 \theta_c \Delta \bar{s}$$

$$g_5^{W^+} = \Delta \bar{u} - \cos^2 \theta_c \Delta d + \Delta \bar{c}_{intr} - \sin^2 \theta_c \Delta \bar{s}$$

$$g_5^{W^-} = -\Delta u + \cos^2 \theta_c \Delta d - \Delta c_{intr} + \sin^2 \theta_c \Delta \bar{s}$$

suitable combinations of structure functions: Light flavors and antiflavors below charm threshold completely determined by

$$\frac{1}{2}\left(g_1^{W^-} - g_5^{W^-}\right) = \Delta u + \Delta c \tag{1}$$

$$\frac{1}{2} \left(g_1^{W^+} + g_5^{W^+} \right) = \Delta \bar{u} + \Delta \bar{c} \tag{2}$$

$$\frac{1}{2} \left(g_1^{W^+} - g_5^{W^+} \right) = \Delta d + \Delta s \tag{3}$$

$$\frac{1}{2} \left(g_1^{W^-} + g_5^{W^-} \right) = \Delta \bar{d} + \Delta \bar{s} \tag{4}$$

six independent combinations (and no help from neutral-current DIS): independent combinations. Use also neutron target: $\Delta u, \Delta \bar{u} \leftrightarrow \Delta d, \Delta d$: only Above c threshold (or even below, with intrinsic charm) we need more

(1) for proton
$$\Rightarrow \Delta u + \Delta c$$

(1) for neutron $\Rightarrow \Delta d + \Delta c$ $\Rightarrow \Delta u - \Delta c$

(3) for proton
$$\Rightarrow \Delta d + \Delta s$$

(3) for neutron $\Rightarrow \Delta u + \Delta s$ $\Rightarrow \Delta u - \Delta d$

and similarly for antiquarks

$$\frac{1}{2} \left(g_1^{W^+} - g_5^{W^+} \right) [n - p] = \Delta u - \Delta d \tag{5}$$

$$\frac{1}{9} \left(g_1^{W^-} + g_5^{W^-} \right) [n - p] = \Delta \bar{u} - \Delta \bar{d} \tag{6}$$

$$\frac{1}{2} \left(\frac{1}{2} W^{-} - \frac{1}{2} W^{-} \right) \left[\frac{1}{2} \left(\frac{1}{2} W^{+} - \frac{1}{2} W^{+} \right) \left[\frac{1}{2} \right] - \frac{1}{2} \left(\frac{1}{2} W^{-} - \frac{1}{2} W^{-} \right) \left[\frac{1}{2} \left(\frac{1}{2} W^{+} - \frac{1}{2} W^{+} \right) \left[\frac{1}{2} \right] - \frac{1}{2} \left(\frac{1}{2} W^{+} - \frac{1}{2} W^{+} \right) \left[\frac{1}{2} \right] - \frac{1}{2} \left(\frac{1}{2} W^{+} - \frac{1}{2} W^{+} \right) \left[\frac{1}{2} \right] - \frac{1}{2} \left(\frac{1}{2} W^{+} - \frac{1}{2} W^{+} \right) \left[\frac{1}{2} \right] - \frac{1}{2} \left(\frac{1}{2} W^{+} - \frac{1}{2} W^{+} \right) \left[\frac{1}{2} \right] - \frac{1}{2} \left(\frac{1}{2} W^{+} - \frac{1}{2} W^{+} \right) \left[\frac{1}{2} \right] - \frac{1}{2} \left(\frac{1}{2} W^{+} - \frac{1}{2} W^{+} \right) \left[\frac{1}{2} \right] - \frac{1}{2} \left(\frac{1}{2} W^{+} - \frac{1}{2} W^{+} \right) \left[\frac{1}{2} \right] - \frac{1}{2} \left(\frac{1}{2} W^{+} - \frac{1}{2} W^{+} \right) \left[\frac{1}{2} \right] - \frac{1}{2} \left(\frac{1}{2} W^{+} - \frac{1}{2} W^{+} \right) \left[\frac{1}{2} \right] - \frac{1}{2} \left(\frac{1}{2} W^{+} - \frac{1}{2} W^{+} \right) \left[\frac{1}{2} W^{+} - \frac{1}{2} W^{+} \right]$$

$$\frac{1}{2} \left(g_1^{W^-} - g_5^{W^-} \right) [p] - \frac{1}{2} \left(g_1^{W^+} - g_5^{W^+} \right) [n] = \Delta s - \Delta c \tag{7}$$

$$\frac{1}{2} \left(g_1^{W^-} + g_5^{W^-} \right) [p] - \frac{1}{2} \left(g_1^{W^+} + g_5^{W^+} \right) [n] = \Delta \bar{s} - \Delta \bar{c} \tag{8}$$

$$\frac{1}{2} \left(g_1^{W^+} - g_5^{W^+} \right) [p+n] = \Delta u + \Delta d + 2\Delta s \tag{9}$$

$$\frac{1}{2} \left(g_1^{W^-} + g_5^{W^-} \right) [p+n] = \Delta \bar{u} + \Delta \bar{d} + 2\Delta \bar{s} \tag{10}$$

Complete separation of all 4 flavors and antiflavors not possible at a fixed

comparing (3,4) above and below threshold. threshold: e.g. Δd and Δd from (3,4) below c, Δc and $\Delta \bar{c}$ (intrinsic) from It becomes feasible by combining measurements below and above the charm (7.8) (a simple test of intrinsic charm), Δu and $\Delta \bar{u}$ from (1,2); Δd and Δd

checks are possible. In particular, a direct measurement of No new information from neutral-current structure functions, but consistency

$$\left(g_{1}^{W^{+}}+g_{1}^{W^{-}}\right)[p]=\left(g_{1}^{W^{+}}+g_{1}^{W^{-}}\right)[n]=\Delta\Sigma^{+}$$

is an interesting and independent check of present indirect information.

In neutral-current DIS:

- First moment of $\Delta\Sigma^+$ directly measured, but based on knowledge of non-singlet first moments from other experiments
- All moments: only from scaling violations

Next-to-leading order analysis

since long time. Coefficient functions to order α_s and splitting function to order α_s^2 known

$$\begin{split} g_1^{W^\pm,\,\text{NLO}} &= \Delta C_q \otimes g_1^{W^\pm,\,\text{LO}} + 2[n_f/2]\Delta C_g \otimes \Delta g \\ g_i^{W^\pm,\,\text{NLO}} &= \Delta C_i \otimes g_i^{W^\pm,\,\text{LO}}, \quad i=4,5 \end{split}$$

$$\Delta C_4^{(1)}(x) = \Delta C_q^{(1)}(x) + C_F x(1+x)$$
$$\Delta C_5^{(1)}(x) = \Delta C_q^{(1)}(x) + C_F x(1-x)$$

previous work for neutral-current structure functions Mangano and GR, Nucl. Phys. B 602 (2001) 585, hep-ph/0101192], based on (Altarelli, Ball, Forte, R). A full NLO evolution code for data analysis has been built [S. Forte, M.

Experimental constraints

From semi-inclusive experiments $|\Delta \bar{u}| \ll |\Delta u^+|$, $|\Delta \bar{d}| \ll |\Delta d^+|$ (first moments).

Theoretical constraints

Positivity of cross sections requires

$$|\Delta q| \le q \qquad |\Delta \bar{q}| \le \bar{q}$$

at leading order, for each individual flavor.

percent). Next-to-leading corrections to these relations can be shown to be small (a few

bounds on the C-odd combinations From these bounds, together with measured unpolarized densities, we can infer

$$\Delta q^- = \Delta q - \Delta \bar{q}.$$

Solid curves: bounds on $x(\Delta u - \Delta \bar{u})$ at $Q^2 = 5 \text{ GeV}^2$, using CTEQ5 unpolarized u and \bar{u} distributions.

(ABFR) and assuming $\Delta \bar{u} = 0$. Dashed curve: $x(\Delta u - \Delta \bar{u})$ obtained using $\Delta u + \Delta \bar{u}$ from fits to NC data

Forte, Mangano, R

Solid curves: bounds on $x(\Delta d - \Delta \bar{d})$ at $Q^2 = 5 \text{ GeV}^2$, using CTEQ5 unpolarized d and d distributions

Dashed curve: $x(\Delta d - \Delta \bar{d})$ obtained using $\Delta d + \Delta \bar{d}$ from fits to NC data (ABFR) and assuming $\Delta d = 0$.

Forte, Mangano, R

 $\Delta d = \Delta d$ incompatible with the positivity bound in the large-x region.

Pascaud an Zomer (more accurate in the strange sector). For the unpolarized s, \bar{s} distributions we use the parametrization of Barone,

Forte, Mangano, R

In this case, both $\Delta \bar{s} = 0$ and $\Delta \bar{s} = \Delta s$ are allowed by the positivity bound.

unexpected smallness of the axial charge a_0 . A central issue in physics of polarized nucleon since 1988: explain the

 $a_0(10 \text{ GeV}^2) = 0.3 \text{ not excluded}$ Present data: a_0 compatible with zero, but values as large as

Different theoretical scenarios proposed:

Cancellation between a large (scale-independent, or AB-scheme) $\Delta\Sigma$ and a large Δg . In this case, $|\Delta u^+|$, $|\Delta d^+| \gg |\Delta s^+|$ (in the AB–scheme), as expected in the quark model

We call this the 'anomaly' scenario.

 Δg small, Δs^+ large and negative. Might be explained by invoking non-perturbative, instanton-like vacuum configuration. In this case, $\Delta s = \Delta \bar{s}$

We call this the 'instanton' scenario.

 Δs^+ large, but Δs significantly different from $\Delta \bar{s}$. Compatible with Skyrme models of the nucleon

We call this the 'skyrmion' scenario.

Main qualitative issues relevant for the nucleon spin structure:

- 1. how small is the axial charge?
- 2. how large is the polarized gluon distribution?
- 3. is Δs large?
- 4. is Δs different from $\Delta \bar{s}$?

detailed questions can be asked. Once individual quark and antiquark distributions have been measured, more

A challenge for future experiments.

The potential of a neutrino factory

Parameters still under study. Our reference choice:

- $E_{\mu} = 50 \; {\rm GeV}$
- muon decays/year $N_{\mu} = 10^{20}$
- $L = 100 \text{ m}, d = 30 \text{ m}, \sigma_x = \sigma_y = 1.2 \text{ mm}, \theta = 0.1 m_{\mu}/E_{\mu}$
- Target: R = 50 cm, thickness 10 g/cm^2

How accurately will charged-current structure functions be measured?

Exploit the different y dependence of each component and the wide-band nature of the ν beam:

$$y=rac{Q^2}{2xmE_
u}$$

recoil energies allows event-by-event reconstruction of x, y and Q^2 . Different y in the same x, Q^2 bin varying E_{ν} . Measurement of μ and hadronic

number of ν per year, geometrical acceptances): region of the x, Q^2 plane compatible with the features of the device (energy, Step #1: Compute the expected errors on the measurements of g_1 and g_5 in a

Forte, Mangano, R

change). Step #2: New fits of existing data, including recent E155 (no qualitative

a_0	η_s	η_d	η_u	η_8	η_3	η_g	η_{Σ}	
0.183 ± 0.030	-0.067	-0.333	0.777	0.579	1.110 ± 0.043	0.79 ± 0.19	0.38 ± 0.03	generic fit
0.284 ± 0.012	-0.090	-0.321	0.719	0.579	1.039 ± 0.029	0	0.31 ± 0.01	$\Delta g=0$ fit

The fit with $\eta_g = 0$ has a higher χ^2 , but once theoretical uncertainties are about two standard deviations taken into account a vanishing gluon distribution can only be excluded at

 η_u, η_d, η_s first moments of $\Delta q + \Delta \bar{q}$ at $Q^2 = 1 \text{ GeV}^2$.

Step #3: Produce sets of "fake" data for charged-current structure functions according to three different assumptions:

- generic fit of the previous table and $\Delta \bar{s} = 0$ (anomaly)
- 2. $\Delta g = 0$ fit of the previous table and $\Delta \bar{s} = \Delta s$ (instanton)
- 3. $\Delta g = 0$ fit of the previous table and $\Delta \bar{s} = 0$ (skyrmion)

In all three cases, $\Delta \bar{u} = \Delta \bar{d} = 0$.

systematics Data with x > 0.7 and /or error larger than 50 discarded. No estimate of Errors given by step #1, data gaussianly distributed about the central values.

Total of 8 sets of fake data (2 structure functions \times 2 beam types \times 2 targets), with ~ 70 data points in each set (neutral-current real data: 176 points).

Step #4: Fit real data + fake data:

0.250 ± 0.007	0.255 ± 0.006	0.183 ± 0.013	a_0
	-0.007 ± 0.007	-0.075 ± 0.008	η_s
	-0.320 ± 0.009	-0.320 ± 0.008	η_d
	0.722 ± 0.010	0.764 ± 0.006	η_u
	0.572 ± 0.013	0.557 ± 0.011	η_8
	1.052 ± 0.013	1.097 ± 0.006	η_3
	0.20 ± 0.06	0.86 ± 0.10	η_g
	0.321 ± 0.006	0.39 ± 0.01	η_{Σ}
	'instanton' refit	'anomaly' refit	

- marginal improvement on the error on η_g ; η_g significantly non-zero even in the instanton and skyrmion cases.
- quark singlet and non-singlet first moments much better determined. Test of Bjorken sum rule and SU(3) violation.
- first moments of Δu^- and Δd^- determined at the few percent level, $\Delta s^$ at the 10% level.

 $x g_{1,5}^p(W^+)$

Forte, Mangano, R

 $x g_{1,5}^p(W^-)$

Forte, Mangano, R

Shape of polarized parton distributions

combination of structure function. A rough estimate: compare each parton distribution with the corresponding

Forte, Mangano, R

Forte, Mangano, R

Forte, Mangano, R

Forte, Mangano, R

Conclusions

- NLO formalism for charged—current polarized DIS reviewed and numerically implemented.
- Experimental constraints: $|\Delta \bar{u}| \ll |\Delta u|$, $|\Delta \bar{d}| \ll |\Delta d|$; $\Delta \bar{s}$ and Δs allowed to have similar size.
- Theoretical constraints: $|\Delta q| < q$, $|\Delta \bar{q}| < \bar{q}$ from positivity;
- neutrino DIS at a ν factory: first moments of C-even distributions than the current uncertainties measured with accuracies which are up to one order of magnitude better
- \Rightarrow definitive confirmation or refutation of the 'anomaly' scenario compared to the 'instanton' or 'skyrmion' scenarios
- \Rightarrow determination of Δs^+ better than 10%; test of models of SU(3) violation when compared to the direct determination from hyperon

- strangeness, and distinguish between 'skyrmion' and 'instanton' scenarios. C-odd distributions: first moments of $\Delta u^-, \Delta d^-$ determined at the level of few percent, Δs^- at the level of 10%; sufficient to test for instrinsic
- shape of the distributions: $\Delta u(x)$ and $\Delta d(x)$ at the level of 15-20%, significant shape information obtained for $\Delta s(x)$. mainly because of gluon contamination from radiative corrections. No