

FAST:

an experiment for a high precision muon lifetime (and G_F)

measurement

Luca Malgeri University of Geneva

July 3, 2002 - $\pmb{\nu} \mathrm{Fact02},$ London

Why do you want to do it? What is it really?

How do you want do to it?

When do you plan to do it?

Luca Malgeri

FAST: an experiment for a high precision muon lifetime (and G_F) (page 2) measurement

Because G_F is one of the three free parameters of the bosonic sector of the Standard Model. They are constrained by:

$$\begin{array}{rcl} \alpha(\mu^2 = 0) &=& 1/(137.035990 \pm 0.000006) & \to (0.045 \ ppm) \\ M_Z &=& 91.1867 \pm 0.0021 \ \text{GeV} & \to (23 \ ppm) \\ G_F &=& 1.16639 \pm 0.00001 \times 10^{-5} \ \text{GeV}^{-2} & \to (9 \ ppm) \end{array}$$

[†] Note: the three parameters fully describe the strength of the electroweak fields: γ , W and Z

 $\begin{array}{c} \textbf{FAST:}\\ an \ experiment \ for \ a \ high\\ precision \ muon \ lifetime \ (and \ G_F)\\ measurement \end{array}$

(page 3)

Parameter n. 1: α

- Josephson effect
- Rydberg constant and de Broglie wavelength of neutrons
- Quantum hall effect
- Anomalous magnetic moment of the electron

....but at nowadays energies the vacuum polarization effects degrade this accuracy:

 $\begin{array}{c} \textbf{FAST:}\\ an \ experiment \ for \ a \ high\\ precision \ muon \ lifetime \ (and \ G_F)\\ measurement \end{array}$

(page 4)

0 • • Parameter

Hadronic vacuum polarization

 $\rightarrow (209 \ ppm)$ $\alpha^{-1}(M_Z^2) = 128.978 \pm 0.027$

are used to extrapolate α at higher scales:

Luca Malgeri

(page 5)

an experiment for a high precision muon lifetime (and G_F)

FAST:

measurement

Needless to say:

(page 6) an experiment for a high precision muon lifetime (and G_F) measurement FAST:

 $(23 \ ppm)$

 91.1867 ± 0.0021 GeV

 M_Z

Luca Malgeri

Luca Malgeri

Unlike α , G_F doesn't suffer hadronic uncertainties measuring the muon lifetime is a sort of high which are suppressed by m_f^2/M_W^2 : energy physics experiment!

 \rightarrow T. van Ritbergen and R.G. Stuart Phys. Lett. B 437 (1998) 201

correction known up to two-loop level (0.5 ppm)

 Δq include the higher order QED and QCD

>° $: \frac{G_F^2 M_{\mu}^5}{192\pi^3} (1 + \Delta q)$

 au^{-1}_{μ}

G F

Parameter n. 3:

 \mathbf{e}^+

Ъ

B

1>¹/

Parameter n. 3: G_F

Going from Fermi model (contact interaction) to Standard Model:

$$G_F = \frac{\sqrt{2}g^2}{8M_W^2}(1 + \Delta r)$$

 Δr are the Electro-Weak corrections:

 $\Delta r = f(\Delta \alpha, m_t, m_H) = \Delta \alpha - \cot^2 \theta_W \Delta \rho + \dots$

 \sim 0.52 ppm) are traditionally included in Other contributions ($\propto m_t^2$ and $\log m_H$) W propagator effects ($\propto \mathcal{O}(m_u^2/m_W^2)$) are used to derive indirect limits on unmeasured parameters the definition of G_F

The present value of $\delta G_F/G_F$ affect the prediction for M_H at the percent level.

Luca Malgeri

(page 8) an experiment for a high precision muon lifetime (and ${\cal G}_{{\cal F}}$) measurement FAST:

3: G_F ity on G_F comes ?	$\frac{\tau_{\mu}}{\tau_{\mu}} + \text{th.}\left(+4\frac{m_{\nu}^2}{m_{\mu}^2}\right)$	PDG2000 Ritbergen and Stuart	<i>PDG2000</i> to be massive)	PDG2000	ant contributions from: Balandin et al. (1974) Bardin et al. (1984) Giovanetti et al. (1984)	FAST: an experiment for a high precision muon lifetime (and G_F) measurement
Parameter n. Where the uncertair from	$\frac{\delta G_F}{G_F} = -\frac{5}{2} \frac{\delta m_{\mu}}{m_{\mu}} - \frac{1}{2} \frac{\delta}{2}$	$\frac{5}{2} \frac{\delta m_{\mu}}{m_{\mu}} = 0.38 \text{ ppm}$ theory = 0.50 ppm	$4\frac{m_{\nu}^2}{m_{\mu}^2} = 10 \text{ ppm}$ (if you assume neutrinos	$rac{\delta au_{\mu}}{ au_{\mu}}= 18 ext{ ppm}$	Domin	Luca Malgeri

What is it really?

An experiment aiming to measure the muon lifetime with an accuracy of 2 ps, i.e., G_F to 1 ppm including all errors.

Requirements:

Large data sample of 10^{12} events over at least 9 τ_{μ} periods $\downarrow \downarrow$ $10^{12} \times 9\tau_{\mu} = 1.5$ years of data taking at 50 % efficiency if only one event per cycle is accepted: parallelization needed! $\downarrow \downarrow$ Tracking capabilities in order to disentangle overlapping events $\downarrow \downarrow$ In order to stay in a reasonable data taking period (~2 months), a high data rate is needed: 1 MHz.

(page 10)

Proposal for an Experiment at PSI

PSI Proposal R-99-06.1 May 27, 1999

Precision Measurement of the μ^+ Lifetime $(G_{\rm F})$ with the FAST Detector

F.R. Cavallo, F.-L. Navarria, A. Perrotta, G. Valenti Univ. Bologna and INFN, Bologna, Italy

J. Kirkby, L. Malgeri, G. Passaleva CERN, Geneva, Switzerland

H. Anderhub, W. Lustermann, R. Nahnhauer¹), <u>M. Pohl</u>, G. Viertel, S. Waldmeier ETH, Zürich, Switzerland

R. Stuart Univ. Michigan, Ann Arbor, USA

D. della Volpe Univ. Naples and INFN, Naples, Italy

P. de Jong NIKHEF, Amsterdam, Netherlands

K. Deiters, F. Foroughi, C. Petitjean, W. Schoeps PSL, Villigen, Switzerland

T. Case, K. Crowe, P. Kammel UCB and LBNL, Berkeley, USA

Abstract

We propose to measure the μ^+ lifetime to a precision of 2 ps (1 ppm) with the fibre active scintillator target detector, FAST. After including all experimental and theoretical sources of error, this will measure the Fermi coupling constant, $G_{\rm F},$ to a precision of 1 ppm, which is an order of magnitude improvement of the present world average. The detector is a small imaging target of dimensions about $20 \times 20 \times 20 \text{ cm}^3$ made from scintillating plastic fibres and viewed by position-sensitive phototubes. A DC π^+ beam of momentum 170 MeV/c is stopped in the target and the subsequent decay time of each pion and muon is recorded. The detector and its readout are designed to operate at a high beam rate of 1 MHz. A data sample of 10^{12} stopped π^+ events is required, corresponding to a beam time of about two months.

¹⁾Permanent address: DESY-Zeuthen, Germany

Systematics: learn from the past

Saclay experiment (Bardin *et al.*):

A scintillator telescope surrounding a sulphur target in a pulsed pion beam.

- The polarized μ component of the beam introduced time dependent inefficiencies due to the limited coverage of the detector
- The low granularity of the detector, together with the beam time structure, produced time dependent effects
- Pile-up free background

TRIUMF experiment (Giovanetti *et al.*):

A water Čerenkov system coupled to two PM in a DC muon beam.

• Electronic pile-up suppression: low statistics.

FAST wanted features:

AST

- Capability to recognize the $\pi \to \mu$ signature avoiding the "polarization effect"
- Controlled pile-up thanks to a high granularity
- Full solid angle coverage
- High detection efficiency over the complete positron energy spectrum
- Cross checked time measurements and stability
- Something else ?????

Design characteristics

Beam:

- DC current π M1 at PSI: 7
- $170 \text{ MeV/c} (\pm 3 \%)$ Momentum:
- Size: 7
- $10 \times 16 \text{ cm}^2$ $10^{6} \, {\rm s}^{-1}$ Intensity: 2
 - 90 % Purity:

2

- Target:
- $\sim 4^{*}4^{*}1600 \text{ mm}^3 \text{ scintillator baguettes}$ forming the readout pixels
 - 2 waveshifters fibers per baguette 7
- 25 p.e./pixel for minimum ionising particle 7
- 40×40 pixel sensitive area

Readout system:

- 100 position sensitive PM with 4×4 photocatode pixels 2
- rise time < 2 ns 7
- 1.6 K deadtime-less TDC channels 7

A scintillating pixel detector, on a DC pion beam, \rightarrow e decay chains \uparrow able to handle up to 30 π in a 30 μ s window:

a) yz view (elevation)

Luca Malgeri

(page 15)

FAST: an experiment for a high precision muon lifetime (and G_F) measurement

- The pion stopping point is modulated by the plastic degrader such that the occupancy is kept uniform
- The pulse height in the stopping pixel is ~ 5 times higher than a m.i.p. \Rightarrow a double threshold discriminator (developed at PSI) is used for tagging purposes
- Every event is a good event and the readout system is almost dead-time free. So, why do we need a trigger?
- \diamond t0 for the whole system;
- $\Leftrightarrow \frac{\text{definition of a "region of interest" where to look for decaying}{\text{muons and decrease the data rate.}}$

SISNJ	
The second second	
SCHO	

 1^{st} level: three-fold coincidence defining the t0

stopping point will be analysed. For each row a 100 MHz 2^{nd} level: two snapshots of the event (15 ns and 100 ns) are used to find, respectively, the stopping point of the pion and muon. Only the 5×5 superpixel around the controller search for "stopping patterns":

Luca Malgeri

FAST: an experiment for a high precision muon lifetime (and G_F) (page 17) measurement

PSPM system: Readout

Sensitive PM's via two green waveshifter fibers: The signal is transported from the scintillator baguette to the 100 Hamamatsu Position

Each PM, packaged with HV divider and plastic cover, provides $4 \times 4 = 16$ anodes (channels), $4 \times 4 \text{ mm}^2$ each:

Luca Malgeri

(page 18)

an experiment for a high precision muon lifetime (and G_F) measurement

FAST:

Readout system: TDC

The stopping point coordinates are used to mask the hits digitization in the \underline{heart} of the system:

- ✓ 64 TDC chips developed by CERN/ECP-MIC group and engineered by CAEN on 16 128-channel boards (v767)
- ✓ "0" conversion time
- \checkmark up to 520 ps of time resolution
- \checkmark up to 1 MHz rate capability

The TDC system is driven by an external Rubidium clock with a base output frequency of 30 MHz and a stability of $\Delta f/f = 2.2 \times 10^{-10}$, much beyond the requirements.

A second Rubidium clock is used as an external time reference and calibration system.

DAQ system: a challenge

The Data AcQuisition system must sustain a continuous event rate of 1 MHz. From physics to tape:

Note: only a 5×5 superpixel region is used. We are forced to drop the rest. An unfair comparison:

	LHC detector	FAST
n. channels	100,000,000	2304
event size	1 MByte	500 Bytes
Physics data throughput	100 MBytes/s	420 MBytes/s

The data are sent to a PC farm which perform the analysis and stores histograms. Only a fraction of the event is recorded for systematics checks.

The full (LV2 info) saving would require a huge amount of mass storage (~ 80 Tbytes) filled with W.O.R.N.'s[†].
The reading+processing time would require much longer than a new data taking period.
[†]W.O.R.N.: Write Once Read Never

DAQ system: a challenge

A commercially available CPU-less solution has been adopted for the VME system:

- a desktop PC is used as a remote CPU for accessing **PVIC=** PCI to VME Intercrate Connection: VME addresses
- \blacklozenge High PCI data rate \rightarrow 80 MBytes/s
- \rightarrow 18MBytes/s High VME data rate (tested in lab.) \$
- 4 VME crates + 4 controller PC's are sufficient *****

Simulations have been performed to study efficiencies and systematics:

1) Trigger configuration and efficiency

51 % of the incoming pions are triggered within the two snapshot structure. The losses are mainly due to early decaying pions, before the second snapshot takes place. Muons are identified by means of the pulse height signal.

2) Selection algorithm

85 % of the events have one or more particles originating from other decay chains and traversing the same 5×5 pixels region. In order to reduce this accidental background component, positron topology cuts have to be applied

How: selection and efficiency

- Hits in the 5×5 pixels region are clustered in time
- ♦ A positron track is defined as a 10³ track with hits in both the inner 10² (3 × 3) and outer (5 × 5) region 10
- Only one cluster of less than 4 pixels is required in the outer layer
- <u>Events with more than one</u> positron track are rejected

(page 23)

FAST

How: systematics - muon spin rotation

A polarized muon source (from beam or from asymmetric muon detection efficiency) precesses around a magnetic field (Earth). If ALSO the positron detection efficiency is asymmetric this can cause a time dependent effect:

 $\begin{array}{c} \textbf{FAST:}\\ an \ experiment \ for \ a \ high\\ precision \ muon \ lifetime \ (and \ G_F)\\ measurement \end{array}$

(page 24)

How: systematics - muon spin rotation

- ✓ Avoid polarized beam muons requiring a detectable $\pi \to \mu$ transition.
- \checkmark Make the detector as uniform as possible:
 - residual muon detection anisotropy along the beam direction from double hit time resolution and high threshold discriminator (10 %)
 - positron detection in efficiency from local effects (unstable thresholds/gain \rightarrow 1 %)

Precession frequencies:

$$\nu^{\mu} = 13.55 \frac{\text{KHz}}{G} \times B \quad \nu^{\text{muonium}} = 1355 \frac{\text{KHz}}{G} \times B$$

FAST: an experiment for a high precision muon lifetime (and G_F) measurement

(page 25)

Luca Malgeri

How: systematics - muon spin rotation

With a suitable choice of the magnetic field and a proper fit procedure this effect can be kept at the level of (0.2 ppm).

 $\begin{array}{c} \textbf{FAST:}\\ an \ experiment \ for \ a \ high\\ precision \ muon \ lifetime \ (and \ G_F)\\ measurement \end{array}$

(page 26)

FAST

How: systematics - time dependent detection efficiencies

♦ After-pulses, in a 10 ns scale, could fake a muon pulse and affect the requirement of a fully detected $\pi \rightarrow \mu \rightarrow e$ chain.

Prob. $\rightarrow 10^{-4}$ with double threshold discriminator

• On a longer time scale $(0.5 \ \mu s)$, after-pulses, gain changes and baseline shifts may affect the electron detection efficiency in pixels already visited by a pion or muon.

Low Threshold	probability
$\geq 1 \text{ pe}$	10~%
$\geq 2 { m pe}$	$1 \ \%$
$\geq 3 { m pe}$	0.1~%

The decay time distribution gets two additional terms:

1) $\propto \exp\left(-t\frac{2}{\tau_{\mu}}\right)$: prob. for an electron to be just under threshold 2) $\propto \exp\left[-t\left(\frac{1}{\tau_{\mu}}+\frac{1}{\tau_{\beta}}\right)\right]$: τ_{β} is the slow after-pulse time component

Simulations based on lab. tests give a total effect of less than 0.3 ppm.

FAST

How: systematics - tracks overlap and pile-up

Given the high occupancy of the detector, event and single track overlap have to be taken into account.

Two separate decay chains (independent on each other):

$$(\pi_1, \mu_1, \mathbf{e}_1) \iff (\pi_2, \mu_2, \mathbf{e}_2)$$

may "interact" and give rise to *fake* decay chains:

 $(\pi_1, \mu_1, \pi_2), (\pi_2, \mu_1, e_1), (\pi_1, \mu_2, \pi_1), \ldots$

Most of these backgrounds have either flat or well behaved $\propto \exp\left(-\frac{t}{\tau_{\mu}}\right)$ time distributions.

 \rightarrow no or little effect on final measurement

but for some of them

(page 28)

How: systematics - tracks overlap and pile-up

 (π_1, μ_1, π_2) : the positron e_1 is lost and an incoming π_2 fakes it. If the following decay appear in the predefined time window $[-10 \ \mu s; 20 \ \mu s]$ the event is not accepted $(\rightarrow \text{ multiple-track})$: late pions have better chance to be accepted

 (π_1, μ_1, e_2) : mirror component, with the positron coming from a (previous) very late decay in the same super-pixel

Using $t_{min} = -10 \ \mu s$, $t_{max} = 20 \ \mu s$, and the probability for the pion track to be reconstructed as a positron track (Montecarlo), this effect is found to be negligible and under control studying the negative time distribution region.

A little bit more complicated case: double kill

The presence of two events with same (or somehow related) space and time structure may give rise to time dependent inefficiencies:

 $prob(e_{kill}) \propto 1 + af(t_{e_2} - t_{e_1}) \qquad prob(\pi_{kill}) \propto 1 + a'f'(t_{\pi_2} - t_{\pi_1})$ eff. = 1 - af(t_{e_2} - t_{e_1}) - a'f'(t_{\pi_2} - t_{\pi_1}) + aa'f(t_{e_2} - t_{e_1})f'(t_{\pi_2} - t_{\pi_1})

The first two "single kill" terms are NOT dependent on $(t_{e_1} - t_{\pi_1})$, while the third gives an additional contribution $\propto \exp(-t/\tau_{\mu})$.

 $\pi_2 \leftrightarrow \pi_1$ correlations:

- π_2 enter the detector just after π_1 during the trigger dead-time
- π_2 enter the detector just after π_1 and TDC cannot resolve the two hits
- π_2 enter much before π_1 when pile-up rejection doesn't apply (< -10 μ s)
- $e_2 \leftrightarrow e_1$ correlations:
 - e_2 overlaps in time and space e_1

under control using the beam rate $\rightarrow 0.2 ppm$

 $\begin{array}{c} \textbf{FAST:}\\ an \ experiment \ for \ a \ high\\ precision \ muon \ lifetime \ (and \ G_F)\\ measurement \end{array}$

(page 30)

How: systematics - physics effects

Muonium formation in scintillator is highly probable (66 %). Is the muon lifetime bound in Muonium state different?

- ✓ Early studies claimed YES
- ✓ A more recent paper from Czarneki, Lepage and Marciano (hep/ph-9908439) show that the correction is at the level of 10⁻⁹, in agreement with phase space arguments
- ✓ Negligible effect on FAST measurement

Rare decays:

- ✔ Radiative decays may alter the topology of the event and hence the detection efficiency
- ✓ Full GEANT simulation show negligible effects
- ✓ Additional electrons from γ conversions increase the number of positron tracks in the detector by 0.25 % → negligible effect
- ✓ Internal conversions $\mu^+ \to e^+ \bar{\nu}_{\mu} \nu_e e^+ e^-$ produce an efficiency loss of $< 3.4 \times 10^{-5}$ but same time structure as the signal

(page 31)

How: fit and summary

Including all considered systematic effects the final fit function will look like:

$$N(t) = \frac{N_0}{\tau_{\mu}} \delta t \left[P_0 + \exp\left(-\frac{t}{\tau_{\mu}}\right) + P_1 \exp\left(-\frac{2t}{\tau_{\mu}}\right) + P_2 \exp\left(+\frac{t}{\tau_{\mu}}\right) \right] \otimes \mu SR$$

 $P_0 =$ flat accidental $P_1 =$ double kill $P_2 =$ late pions P_0 and P_2 can be left free in the fit but P_1 would increase the systematic error by 2-3 ppm. Need to get it from data: dedicated runs for efficiency studies, beam rate, off-line extrapolation.

Systematics summary tables

Source	Syst. e Before	error (ppm) After corr	Source	Error (ppm)
Muon spin rotation	1 7		Statist. $+$ acc.	1.2
Time dep officien	1.1	0.2	Systematics	0.4
Time dep. emcien. Track overlap	0.9	0.3	Error on $ au_{\mu}$	1.3
Physics offects	1.1	0.2	Radiative corr.	0.2
Thysics effects	-	0.001	Error on G_F	0.66
total systematics		0.41	- 1	

(page 32)

When do you plan to do it

First milestone met at the end of year 1998: test-beam at PSI

- ♦ Check feasibility studies
- $\blacklozenge 1/10$ of the detector with several configurations
- ♦ Low intensity
- \blacklozenge Check fibers, PSPM and TDC's behaviors

 $\begin{array}{c} \textbf{FAST:}\\ an \ experiment \ for \ a \ high\\ precision \ muon \ lifetime \ (and \ G_F)\\ measurement \end{array}$

(page 33)

Luca Malgeri

Test beam

The dynamic range has been studied, together with double hit resolution, discriminator requirements, TDC performances, etc.

 $\begin{array}{c} \textbf{FAST:}\\ an \ experiment \ for \ a \ high\\ precision \ muon \ lifetime \ (and \ G_F)\\ measurement \end{array} (page \ 34)$

When do you plan to do it: cont'd

	Date	Activity
V	$2000 \ (1^{\rm st})$	Experiment approved at PSI
~	$2001 \ (1^{\rm st})$	Prototype tests, re-design of DAQ
	$2002 (3^{\rm rd})$	System integration tests at PSI
	$2003~(2^{\rm nd})$	Installation
	$2003~(3^{\rm rd})$	Check-out
	2003-2004	Data taking

Collaboration: CERN, University of Geneva, NIKHEF, PSI http://www.cern.ch/fast/

 $\begin{array}{c} \textbf{FAST:}\\ an \ experiment \ for \ a \ high\\ precision \ muon \ lifetime \ (and \ G_F)\\ measurement \end{array}$

(page 35)

FAST

<u>Conclusions</u>

• FAST aims to measure with 10 times better accuracy than the present world average the Fermi coupling constant G_F

✤ Major challenges:

- stability and data rate: from a 0.008 m^3 detector, an LHC detector equivalent throughput has to be handled \rightarrow a test bench for new generation experiments
- very subtle systematic effects have to be sorted out
- ◆ Feasibility established in simulation and test beams
- ◆ Stay tuned for results in 1-2 years

Credits for the material:

A. Barczyk, F. Cavallo, P. de Jong, P. Kammel, J. Kirkby, R. Nahnhauer, F.Navarria, G. Passaleva, A. Perrotta, C. Petitjean, M. Pohl, R. Stuart, G. Valenti,D. della Volpe

(page 36)