

Unibertsitatea

F.E.T.S. Beam pipe including drift vessel **Conceptual design** by P. Savage 5th October 2008

Components of LEBT beam pipe and drift vessel

- 1) Outside diameter = 380mm
- 2) Inside diameter = 368mm
- 3) Length = 298mm (face to face)
 - \rightarrow 26mm clearance to solenoid

LEBT drift vessel

Side view

L.E.B.T. beam pipe assembly sequence

Assembly sequence

2) First tank in position

3) Place 1st solenoid support

Universidad del País Vasco Euskal Herriko Unibertsitatea

4) Add 1st solenoid

Euskal Herriko Unibertsitatea

5) Insert 1st beam pipe section

Universidad del País Vasco

Faraday cup / beam stop

Science & Technology (ASTEC, ISIS (Marcine College Facilities Council

Position 1: F.C.T. On beam axis

Position 2: Faraday cup on beam axis

Separate faraday cup and FCT design

Overcomes problems associated with centre to centre distance > 100mm and then heating up of F.C.T. due to proximity of radiating faraday cup

Hand calculations produced a temperature of 720K for the faraday cup – needs further work.

Facilities Council

Faraday Cup

Measurement of the mean beam current on particle accelerators (beam stopper)

Science & Technology

Material:

Cup and shield:	Tantalum
Cup support:	Stainless Steel
Cup insulation:	Ceramics
Cup shape:	Conical
Max. beam power:	600 W (uncooled version) / 6 kW (cooled version)
Connector:	BNC
Max. high voltage:	2500 V
UHV-Feedthrough:	Compressed air actuated Feedthrough

WARWICK

Imperial College London

Science & Technology

Euskal Herriko Unibertsitatea

Imperial College London

Science & Technology Asternology Facilities Council

🖻 Visualisation of potential distributions - JP		
	load	
	rmin 0	
	z min 0	
	r max 65	
	z max 120	
	Pot 1.37746023218136E-03 max	
	Pot min	
	Pixel 1083.333333333333	
	Pixel 2000	
	draw intensity	
	draw aequi pot	
	draw geometry	
	100 %	
Mk III Faraday cup assembly:		
Minimum on axis voltage ~ -546V		
	0%	
	end	

Conclusions:

- LEBT beam pipe and drift vessel design is complete, pending OK from Jim Loughrey. VG Scienta happy with design – VG are investigating most appropriate pneumatic push/pull device.
- Physics design of faraday cup is complete?
- Early thermal hand calcs suggest non-cooled, non-exotic faraday cup should survive.
- Plan to proceed to engineering drawings ASAP, faraday cup design can follow. Aim to complete by end November, allowing one week for quotes, could be in to manufacture before year end.