

Imperial College London

WARWICK

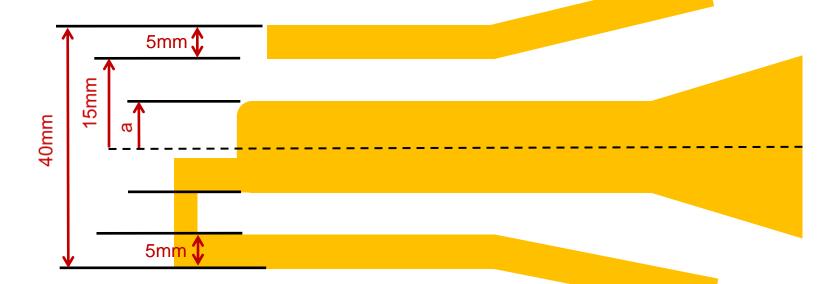
FETS RFQ Coupler

Initial Design Info

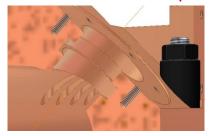
by Peter Savage

1st July 2010

GOAL:


To gather enough facts to be able to start designing a 324MHz FETS RFQ coupler.

The design will be a first best guess that will enable us to do some modelling (COMSOL) so that we start to understand the problems.


QN: What size is the coupler at the loop end?

Using an existing tuning port (DN40CF) as a coupling port gives the following dimensions – roughly.

Assuming coupler is design for a characteristic impedance (Z_c) of 50 ohms.

DN40CF port

Characteristic Impedance $(Z_c) = 60 \ln (b/a)$

where b is the outer radius = 15mm therefore, b/a = 2.3

a = 6.5mm = 0.0065m

In other words, a DN40CF port suggests an inner core diameter of approx 13mm.

Slide 3 of 21

Science & Technology Facilities Council

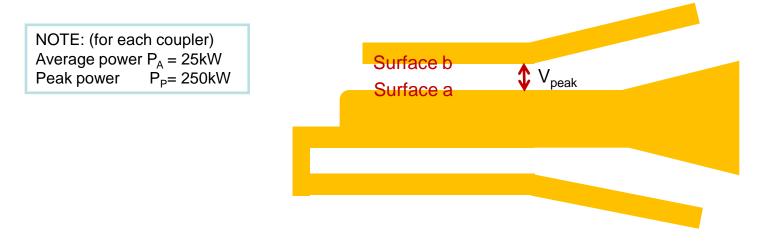
Toshiba Klystron E3740A Specification

Frequency (MHz)	324
Output Power (MW)	3.0
Efficiency (%)	55
Gain (dB)	50
R.F. Pulse Length (µs)	620
Beam Pulse Length (µs)	700
Pulse Rate (pps)	50
Beam Voltage (kV)	110
Anode Voltage (kV)	94
Beam Current (A)	50
Beam Perveance (I/V ^{1.5})	1.37 x 10 ⁻⁶
No. Of Cavities	5
Window	Coaxial
Output Flange	WR-2300
Weight (kg)	730
Tube Length (m)	4.55

How much power?

Klystron can deliver 3 MW, we need approx 1 MW

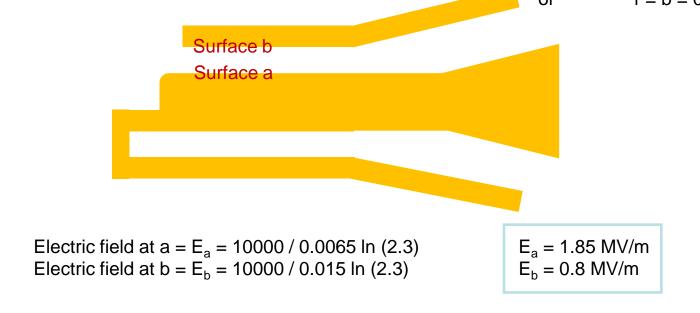
Beam power = energy rise x current $= 3 \times 10^{6} (eV) \times 65 \times 10^{-3} (A)$ = 195 kW

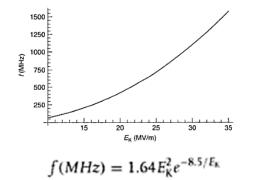

Leaving approx 800kW going into bulk copper

QN: What is the peak voltage?

The 324MHz Klystron can deliver 1MW peak power and hence 100kW average power at 10% duty cycle.

As a starting point let's assume we have 4 couplers delivering an average power of 25kW each.


For a power P (in Watts) flowing along the coax line the <u>peak</u> voltage between the inner and outer conductor is given by:


$$V_{peak} = \sqrt{2.P_{P}.Z_{c}}$$
 where: $P_{P} = 250kW$
 $Z_{c} = 50 \text{ ohms}$
therefore $V_{peak} = 5000V$

But! If the power should get reflected we could get double that so let's assume:

 $V_{peak} = 10kV$ for reference, vane voltage = 85kV Slide 5 of 21

Kilpatrick limit at 324MHz in a vacuum = 17.8 MV/m

Our highest electric field (at surface a) is 1/10th the limit.

Conclusion: A DN40CF port could be used for a 250kW coupler.

Slide 6 of 21

QN: What size cable do we need?

VER

kW

560

457

395

HELIFLEX® Cable

Facilities Council

HCA318-50 Series 3-1/8" Air Coax

APPLICATIONS

TRANSMISSION

Cable Type	Air-Dielectric, Corrugated
Size	3-1/8"
STRUCTURE	
Inner Conductor Material	Corrugated Copper Tube
Diameter Inner Conductor, mm	34.8 (1.37)
(in)	
Diameter Dielectric, mm (in)	75.3 (2.96)
Outer Conductor Material	Corrugated Copper
Diameter Copper Outer	85.5 (3.36)
Conductor, mm (in)	
Diameter over Jacket Nominal,	90.5 (3.56)
mm (in)	
MECHANICAL SPECIFICATIONS	
Cable Weight, kg/m (lb/ft)	3.3 (2.25)
Minimum Bending Radius, Single	380 (15)
Bend, mm (in)	
Minimum Bending Radius,	1100 (43)
Repeated Bends, mm (in)	
Tensile Strength, N (lb)	2600 (585)
Recommended / Maximum Clamp	0.8 / 1.2 (2.75 / 4.0)
Spacing, m (ft)	
ELECTRICAL SPECIFICATIONS	
Impedance, Ohm	50 +/- 0.5
Velocity, percent	96
Capacitance, pF/m (pF/ft)	70.0 (21.3)
Inductance, µH/m (µH/ft)	0.175 (0.053)
Maximum Frequency, GHz	1.5
Peak Power Rating, kW	940
RF Peak Voltage, Volts	9700
Jacket Spark, Volt RMS	8000
Inner Conductor dc Resistance,	0.43 (0.13)
ohm/1000 m (ohm/1000 ft)	
Outer Conductor dc Resistance,	0.13 (0.04)
ohm/1000 m (Ohm/1000 ft)	

		-0-) 	
0J	JB ATTENUATI	ON AND AVERA	AGE POWER
	Attenuation	Attenuation	Average
	dB/100 m	dB/100 ft	Power kW
	0.0245	0.0075	703

Science & Technology

TV, Broadcast

		IVIT 12	ub/10011	
		0.5	0.0245	0.0075
		1.0	0.0346	0.0106
	Air-Dielectric, Corrugated	1.5	0.0425	0.0129
	3-1/8"	2.0	0.0491	0.0150
		10	0.111	0.0337
	Corrugated Copper Tube	20	0.158	0.0480
	34.8 (1.37)	30	0.194	0.0591
		50	0.252	0.0769
	75.3 (2.96)	88	0.338	0.103
	Corrugated Copper	100	0.362	0.110
	85.5 (3.36)	108	0.377	0.115
		150	0.448	0.136
	90.5 (3.56)	174	0.484	0.148
		200	0.521	0.159
		300	0.648	0.198
	3.3 (2.25)	400	0.757	0.231
		450	0.808	0.246
le	380 (15)	500	0.856	0.261
	(100 (10)	512	0.867	0.264
	1100 (43)	600	0.946	0.288
		700	1.03	0.314
	2600 (585)	800	1.11	0.339
np	0.8 / 1.2 (2.75 / 4.0)	824	1.13	0.344
		894	1.18	0.360
		900	1.19	0.362
	50 +/- 0.5	925	1.21	0.367
	96	960	1.23	0.375
	70.0 (21.3)	1000	1.26	0.384
	0.175 (0.053)	1250	1.43	0.436
	1.5	1500	1.59	0.485
	940	Standard	Conditions:	
	9700	For atten	uation: VSWR 1.0, cal	ple temperature 2
	8000	For avera	ge power: VSWR 1.0, a	ambient temperati
	0.43 (0.13)	inner cor	ductor temperature 1	15° C (239° F). N
	0.45 (0.13)			

HCA318-5

Frequency

MHz

337 175 80 123 591 100 69 77.3 57.9 54.2 52.1 44.0 40.8 38.0 30.9 26.7 25.1 23.8 23.6 21.8 20.2 18.9 18.6 17.9 17.9 17.6 17.3 17.0 15.3 14.1 ure 20° C (68° F).

perature 40° C (104°F) F). No solar loading.

"For an air line the limit is given by the breakdown strength of air.

Imperial College

London

Looking at commercial lines of ~1"-9" diameter they seem to be rated for a limit of 1.1-1.3 MV/m which is I guess consistent with the DC breakdown limit in dry air of ~3 MV/m.

WARWICK

del País Vasco

Unibertsitates

A commercial 1-5/8" diameter air coax I found for example has a max (peak) power rating of 270 kW. However the average power is limited to 11 kW at 300 MHz so losses would seem to be more of a limit than sparking for our high duty factor.

If we wanted to have 1 MW divided 4 ways at 10% duty factor then we need 25 kW average per coax and it looks like that would need 3-1/8" coax even though it is well over-rated in terms of voltage." – Alan Letchford

CONNECTORS AND AC	CESSORIES	
Connectors	See pages 79-81	
Jumpers	See pages 82-87	
Accessories	See pages 103-105	
Coaxial Devices	See pages 106-108	
Technical Appendix	See pages 639-648	

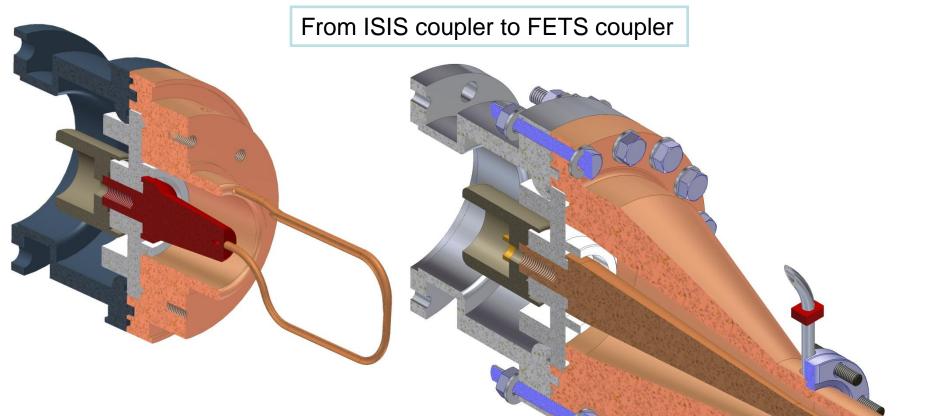
ANSWER: 3-1/8" if we use 4 x 250kW couplers.

CONCLUSION:

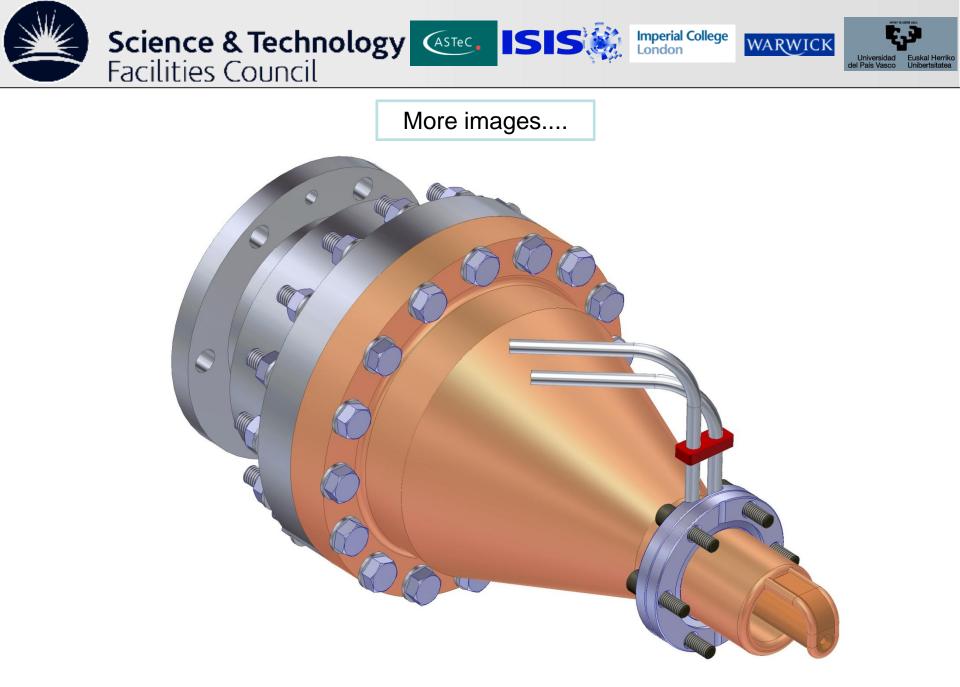
Knowing the impedance leads us to the geometry - and knowing the power and frequency we can calculate the peak voltage, and then the electric fields – to see whether breakdown is a problem.

I have enough info to create a CAD model using the geometry shown here for the loop end and assuming a 3-1/8" coax at the air end.

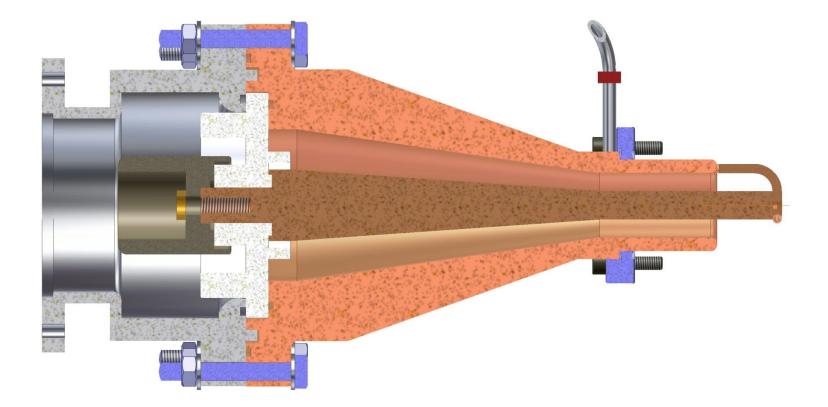
Between the vacuum and air side I will use an ISIS based window design.

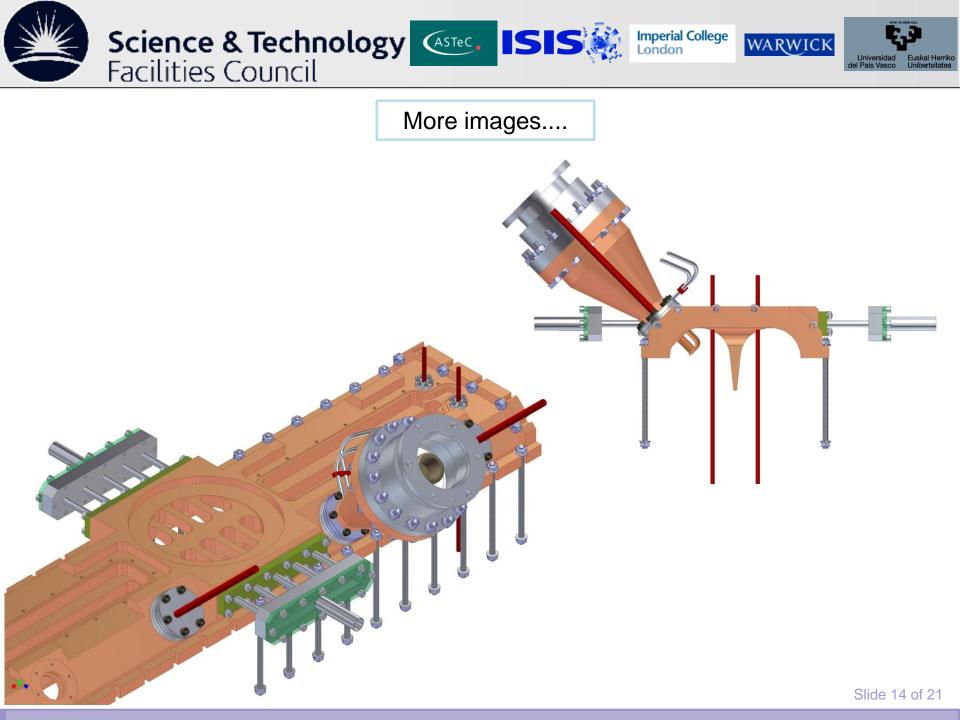

MORE:

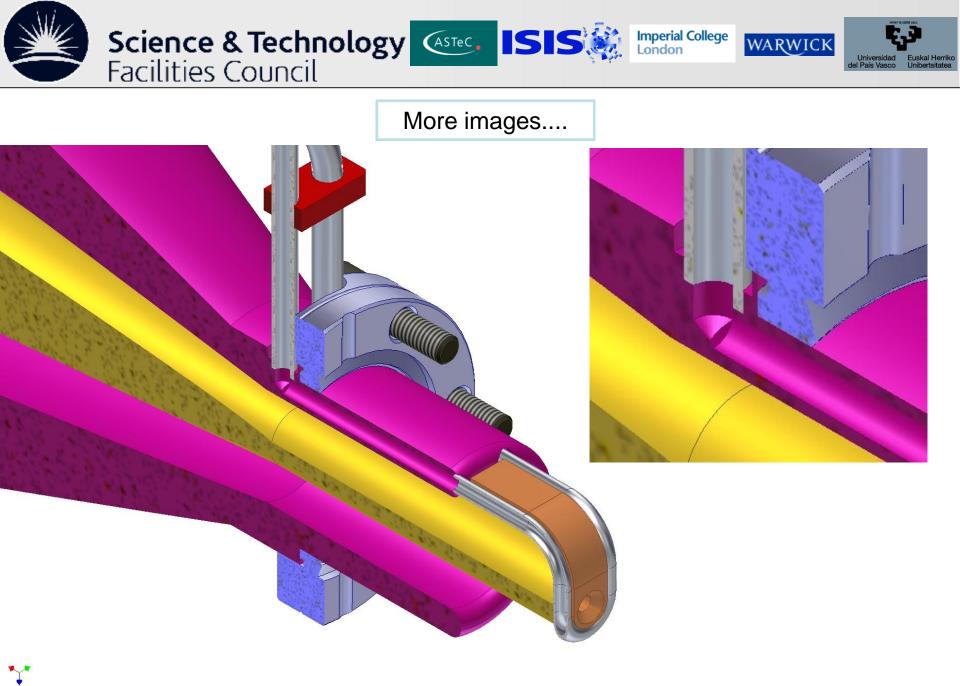
"Just one caveat though about using the 40mm port: If we have an RF vacuum window at the port then it is likely to be the window that is the limiting factor not the peak surface field in the coax line. Because the window material will have a higher dielectric constant than air or vacuum the field will be concentrated around the area of the window. Also the coax inner diameter has to be adjusted at the position of the window because the formula you've used is for a dielectric constant of 1 ie air/vacuum*. There's no simple way of determining the field enhancement at the window so we'll only get this from some further modelling which will tell us if there's likely to be a problem of breakdown at the window". – Alan L.

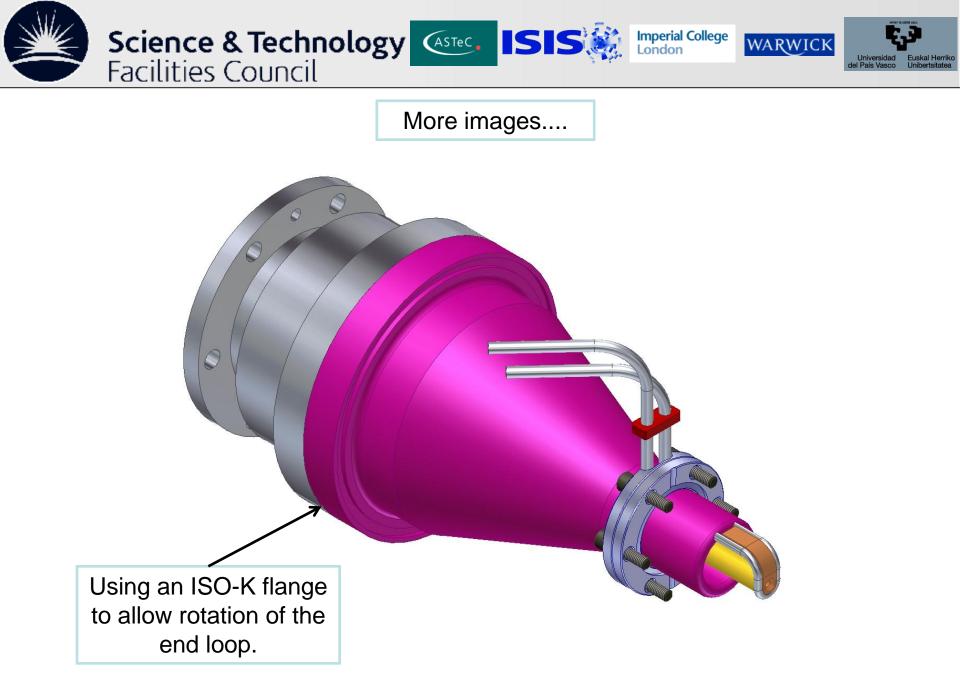


Waveguide frequency bands and interior dimensions						
Frequency Band	Waveguide Frequency Standard Limits (GHz		Inside Dimensions (inches)			
	WR-2300	0.32 - 0.49	23.000 x 11.500			
	WR-2100	0.35 - 0.53	21.000 x 10.500			
	WR-1800	0.43 - 0.62	18.000 x 9.000			
	WR-1500	0.49 - 0.74	15.000 x 7.500			
	WR-1150	0.64 - 0.96	11.500 x 5.750			
	WR-1000	0.75 - 1.1	9.975 x 4.875			
	WR-770	0.96 - 1.5	7.700 x 3.385			
	WR-650	1.12 to 1.70	6.500 x 3.250			
R band	WR-430	1.70 to 2.60	4.300 x 2.150			
D band	WR-340	2.20 to 3.30	3.400 x 1.700			
S band	WR-284	2.60 to 3.95	2.840 x 1.340			
E band	WR-229	3.30 to 4.90	2.290 x 1.150			
G band	WR-187	3.95 to 5.85	1.872 x 0.872			




- 1. Reuses ISIS coupler back end need to design this to suit coax connector.
- 2. Reuses ISIS design ceramic window.
- 3. Extended and reduced diameter nose to suit DN40CF tuner port flange.
- 4. Diameters of inner and outer coax conductors follow ratio of 2.3 maintaining impedance of 50 ohms.
- 5. Coupling loop is water cooled.
- 6. Outer copper conductor is a vacuum brazed assembly.

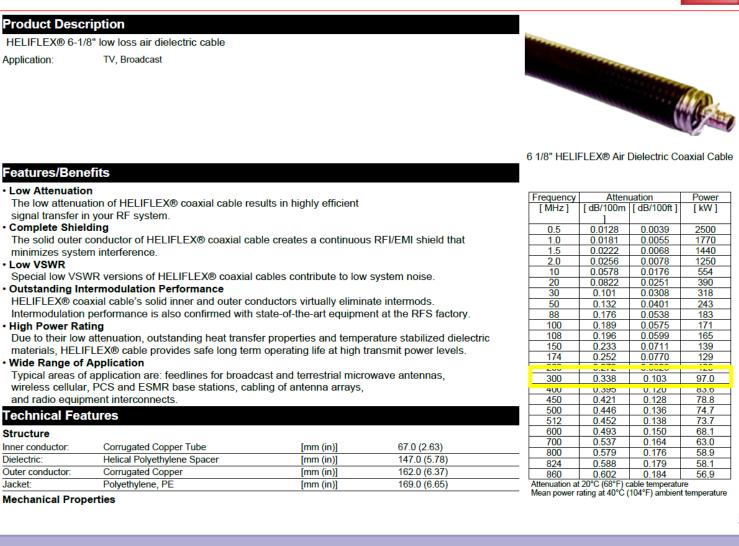




More images....

CONCLUSION:

- 1. Please let me know if you spot anything obviously wrong with this design.
- 2. Once we are all happy I can create a defeatured model to be used for FEA simulation.



Science & Technology

6 1/8" HELIFLEX® Air-Dielectric Coaxial Cable

Product Data Sheet

HCA618-50J

Imperial College

London

WARWICK

Universidad del País Vasco

Unibertsitatea

Slide 18 of 21

Science & Technology

RFS The Cle	ar Choice ®	HCA618-50J		Rev: C0 / 09.Oct.2007	Radio Frequency Sy
·					
Other Options:	Phase stabilized and phase	matched cables and assemblies are avai	factory for o specific free	options in your quency band.	
VSWR Performance:	Standard	[dB (VSWR)]	or better wi bands of m frequency r	thin the operation	
Fire Performance:	Halogene Free		Typical 20	8dB (1.2:1 VSWR)	
Other Characterist					
Operation temperature		[°C (°F)]	-50 to +85 ((-58 to +185)	
Installation temperature		[°C (°F)]		(-40 to +140)	
Storage temperature		[°C (°F)]		(-94 to +185)	
Recommended Ter	mperature Range				
DC-resistance outer co	nductor	[Ω/km (Ω/1000ft)]	0.044 (0.01	3)	
DC-resistance inner co		[Ω/km (Ω/1000ft)]	0.17 (0.052		
RF Peak voltage rating		[V]	17000		
Peak power rating		[kW]	2890		
Jacket spark test RMS		[V]	8000		
Max. operating frequer	су	[GHz]	0.86		
Inductance		[µH/m (µH/ft)]	0.173 (0.05	3)	
Capacitance	-	[pF/m (pF/ft)]	69.0 (21.0)		
Relative propagation v		[%]	97		
Characteristic impedan		[Ω]	50 +/- 0.5		
Electrical Propertie	25				
Recommended / maxin	num clamp spacing	[m (ft)]	1.0 / 2.0 (3.	3/6.6)	
Max. tensile force		[N (lb)]	6000 (1349)	
Bending moment		[Nm (lb-ft)]	1000 (738)		
Minimum bending radiu		[mm (in)]	1500 (59)		
Minimum bending radiu	is single bending	[kg/m (ib/it)]	1000 (39)		
Weight, approximately		[kg/m (lb/ft)]	10.0 (6.7)		

Imperial College London

WARWICK

-

Euskal Herriko Unibertsitatea

Universidad del País Vasco

Facilities Council

Product Data Sheet

HCA495-50J

5" HELIFLEX[®] Air-Dielectric Coaxial Cable Product Description HELIFLEX® 5" low loss air dielectric cable Application: TV, Broadcast 5" HELIFLEX® Air Dielectric Coaxial Cable Features/Benefits Low Attenuation The low attenuation of HELIFLEX® coaxial cable results in highly efficient signal transfer in your RF system. Complete Shielding The solid outer conductor of HELIFLEX® coaxial cable creates a continuous RFI/EMI shield that minimizes system interference. Low VSWR Special low VSWR versions of HELIFLEX® coaxial cables contribute to low system noise. Outstanding Intermodulation Performance HELIFLEX® coaxial cable's solid inner and outer conductors virtually eliminate intermods. Intermodulation performance is also confirmed with state-of-the-art equipment at the RFS factory. High Power Rating Due to their low attenuation, outstanding heat transfer properties and temperature stabilized dielectric materials, HELIFLEX® cable provides safe long term operating life at high transmit power levels. Wide Range of Application Typical areas of application are: feedlines for broadcast and terrestrial microwave antennas, wireless cellular, PCS and ESMR base stations, cabling of antenna arrays, and radio equipment interconnects. Technical Features Structure Inner conductor: Corrugated Copper Tube [mm (in)] 45.0 (1.77) Dielectric: Helical Polyethylene Spacer 98.1 (3.86) [mm (in)] Outer conductor: Corrugated Copper 109.3 (4.30) [mm (in)] Jacket: Polyethylene, PE 115.1 (4.53) [mm (in)] Mechanical Properties Weight, approximately [kg/m (lb/ft)] 4.5 (3.0) Minimum bending radius, single bending 500 (20) [mm (in)] Minimum bending radius, repeated bending 1200 (47) [mm (in)] Dending and and This dis div 005 (047)

Frequency	Atten	Power	
[MHz]	[dB/100m]	[dB/100ft]	[kW]
0.5	0.0195	0.0059	1200
1.0	0.0276	0.0084	848
1.5	0.0338	0.0103	692
2.0	0.0391	0.0119	599
10	0.0879	0.0268	266
20	0.125	0.0380	187
30	0.153	0.0467	153
50	0.199	0.0606	118
88	0.266	0.0810	88.3
100	0.284	0.0865	82.7
108	0.295	0.0900	79.7
150	0.350	0.107	67.3
174	0.378	0.115	62.4
200	0.400	0.124	50.1
300	0.503	0.153	47.1
400	0.000	U.170	40.7
450	0.623	0.190	38.3
500	0.659	0.201	36.3
512	0.667	0.203	35.9
600	0.726	0.221	33.1
700	0.789	0.240	30.5
800	0.848	0.258	28.5
824	0.861	0.263	28.1
894	0.900	0.274	27.0
900	0.904	0.275	26.9
925	0.917	0.280	26.5
960	0.936	0.285	26.0
1000	0.957	0.292	25.5

Mean power rating at 40°C (104°F) ambient temperature

Science & Technology Asternology Facilities Council

Technical Fea	tures					500	0.659	0.201	36.3
						512 600	0.667	0.203	35.9 33.1
Structure						700	0.720	0.221	30.5
Inner conductor:	Corrugated Copper Tul		[mm (in)]	45.0 (1.77	<i>,</i>	800	0.848	0.258	28.5
Dielectric:	Helical Polyethylene S		[mm (in)]	98.1 (3.86	<i>.</i>	824	0.861	0.263	28.1
Outer conductor:	Corrugated Copper		[mm (in)]	109.3 (4.3	-	894	0.900	0.274	27.0
Jacket:	Polyethylene, PE		[mm (in)]	115.1 (4.5	3)	900	0.904	0.275	26.9
Mechanical Prop	erties					925 960	0.917 0.936	0.280	26.5 26.0
Weight, approximate	ly		[kg/m (lb/ft)]	4.5 (3.0)		1000	0.957	0.285	25.5
Minimum bending ra	dius, single bending		[mm (in)]	500 (20)				able temperati	ure
Minimum bending ra	dius, repeated bending		[mm (in)]	1200 (47)		Mean power	rating at 40°C ((104°F) ambier	nt temperature
Bending moment			[Nm (lb-ft)]	335 (247)					
Max. tensile force			[N (lb)]	3000 (674	·				
Recommended / max	ximum clamp spacing		[m (ft)]	1.0 / 2.0 (3	3.3 / 6.6)				
Electrical Proper	ties								
Characteristic imped	ance		[Ω]	50 +/- 0.5					
Relative propagation	velocity		[%]	97					
Capacitance			[pF/m (pF/ft)]	68.0 (20.7)				
Inductance			[µH/m (µH/ft)]	0.170 (0.0	52)				
Max. operating frequ	ency		[GHz]	1					
Jacket spark test RM	IS		[V]	8000					
Peak power rating			[kW]	1560					
RF Peak voltage rati	ng		[V]	12500					
DC-resistance inner	conductor		[Ω/km (Ω/1000ft)]	0.31 (0.09					
DC-resistance outer	conductor		[Ω/km (Ω/1000ft)]	0.094 (0.0	29)				
Recommended T	emperature Range								
Storage temperature	1		[°C (°F)]	-70 to +85	(-94 to +185)				
Installation temperate	ure		[°C (°F)]	-40 to +60	(-40 to +140)				
Operation temperatu	re		[°C (°F)]	-50 to +85	(-58 to +185)				
Other Characteri	stics								
Fire Performance:	Halogene Free								
	-				.8dB (1.2:1 VSWR)				
					vithin the operation				
VSWR Performance	Standard				nost global ranges. Premium				
vSwk Penormance.	. Standard		[dB (VSWR)]		able. Contact				
					options in your				
				specific fre	equency band.				
Other Options:	Phase stabilized and p	hase matched cables and	l assemblies are ava	ilable upon re	quest.				
DES The C	lear Choice ®	ЦС	A495-50J		Rev: E0 / 31	May 2010			
	e internet at http://www.rfsw		493-303		101. 2070			Dadia Ercan	ency Systems
Please visit us on the	e internet at <u>nttp://www.rfsw</u>	ronu.com/						Radio Frequ	ency systems

Imperial College London

WARWICK

Universidad del País Vasco

Euskal Herriko Unibertsitatea