

FETS Mechanical Engineering Update

by Peter Savage

17th November 2010

Copper specification

Key points taken from CERN document: **Materials for high vacuum technology: an overview** *by S. Sgobba*

Summary: Cu OFE, C10100, 99.99% min Cu. A high conductivity electrolytic copper (in the annealed state, conductivity > 101% IACS at 20^oC) with limits for oxygen and 17 other impurities [1].

- 1. OFE grade is preferred for applications involving vacuum brazing or electron beam welding.
- 2. Fine-grained products (CERN specifies a maximum grain size of 90 microns) are mandatory for vacuum applications, especially when thin-walled components are foreseen.
- 3. The supplied bars should be 100% ultrasonically inspected to detect possible continuity faults.
- 4. For ease of machining, half-hard tempers are preferred to fully soft conditions.

[1] ASTM B170-99(2004), Standard Specification for Oxygen-Free Electrolytic Copper - Refinery Shapes.

Now replaced by: ASTM B170-99(2010)

OFE – oxygen free electronic

IACS – International Annealed Copper Standard

Copper composition ASTM specification

APPLICATION DATASHEET Standard Designation For WROUGHT ALLOYS Last Update: July 14, 2010

Coppers C10100 - C12099

Page 1 of 2

Composition, percent maximum, unless shown as a range or a minimum

Copper No.	Designation	Description	Cu(incl Ag)	Ag(%) Min Ag(Troy oz) Min	As	Sb	Ρ	Те	Other Named Elements	
C10100 ⁽¹⁾	OFE	Oxygen-Free -Electronic	(; 99.99min	3)		.0005	.0004	.0003	.0002	.0005 Oxygen	-
(1)										(2)	
C10200 ⁽¹⁾	OF	Oxygen-Free	99.95min							.0010 Oxygen	
C10300	OFXLP	Oxygen-Free Copper	99.95min ⁽⁴	4)				.001005			
 C10400 ⁽¹⁾		Oxygen-Free with Ag	99.95min	.027	8					.0010 Oxygen	
C10500 ⁽¹⁾		Oxygen-Free with Ag	99.95min	.034	10					.0010 Oxygen	
 C10700 ⁽¹⁾	OFS	Oxygen-Free with Ag	99.95min	.085	25					.0010 Oxygen	
C10800	OFLP		99.95min ⁽⁴	4)				.005012			
C10910 ⁽¹⁾			99.95min						(05 Oxygen	
C10920			99.90min							.02 Oxygen	
C10930			99.90min	.044	13					.02 Oxygen	
C10940			99.90min	.085	25					.02 Oxygen	
C11000 ⁽¹⁾	ETP	Electrolytic Tough Pitch	99.90min							(5)	
C11010 ⁽¹⁾		Remelted High Conducivity	99.90min							(5)	
C11020 ⁽¹⁾		Fire-Refined High Conductivity	99.90min							(5)	
C11030 ⁽¹⁾		Chemically Refined Tough Pitch	99.90min						-	(5)	
 C11040 ⁽¹⁾			99.90min			.0005	.0004		.0002	(6)	
C11045	ETP	ETP	99.90min			.0005	.0004		.0002	(7)	
C11100 ⁽¹⁾	ETP	Electronic	99.90min							(8)	

Science & Technology

Imperial College London

Temper designations

I. Annealer	d Tempers, O			4. Cold-Wo	rked Tempers, H			
Fempers pro	duced by annealing to meet mechanical properties red	uirements.		Relieved Ten	duced by controlled amounts of cold work, Cold-Worked (Drawn), Stress- npers, HR-Tempers produced by controlled amounts of cold work followed b			
010 011	Cast and annealed (homogenized) As-cast and precipitation heat treated	2. Annealed Tempers, OS		stress relief and Order-Strengthening Tempers, HT-Tempers produced by controlled amounts of cold work followed by a thermal treatment to produce order strengthening.				
020	Hot forged and annealed	Tempers p	roduced by annealing to meet standard	H00 H01	1/8 hard 1/4 hard			
025	Hot rolled and annealed	OS005	Average grain size, 0,005mm	H02	1/2 hard			
030	Hot extruded and annealed	OS010	Average grain size, 0,010mm	H03	3/4 hard			
031	Extruded and precipitation heat treated	OS015	Average grain size, 0,015mm	H04	Hard			
O40	Hot pierced and annealed	OS025		H06	Extra hard			
050	Light annealed	OS035		H08	Spring			
O60	Soft annealed			H10	Extra spring			
061	Annealed	OS050		H12	Special spring			
065	Drawing annealed	OS060	Average grain size, 0,060mm	H13	Ultra spring			
068	Deep-drawing annealed	OS070	Average grain size, 0,070mm	H14	Super spring			
070	Dead-soft annealed	OS100	Average grain size, 0,100mm	H50	Extruded and drawn			
080	Annealed to temper, 1/8 hard	OS120	Average grain size, 0,120mm	H52	Pierced and drawn			
081	Annealed to temper, 1/4 hard	OS150	Average grain size, 0,150mm	H55	Light drawn;light cold rolled			
082	Annealed to temper, 1/2 hard	OS200		H58	Drawn general purpose			
		00200	All age grain bize, 0,2001111	H60 H63	Cold heading; forming Rivet			
3. Manufac	ctured Tempers, M				Screw			
	duced in the product by the primery menufacturing and	rationa of coa	ting and	H64 H66				
	oduced in the product by the primary manufacturing ope		ting and	H66	Bold			
not working a	and controlled by the methods employed in the operati		ting and					
not working a M01	and controlled by the methods employed in the operati As-sand cast		ting and	H66 H70	Bold Bending Hard drawn			
not working a M01 M02	and controlled by the methods employed in the operati As-sand cast As-centrifugal cast		ting and	H66 H70 H80	Bold Bending			
M01 M02 M03	and controlled by the methods employed in the operati As-sand cast		ting and	H66 H70 H80 H85	Bold Bending Hard drawn Medium-hard-drawn electrical wire			
not working a M01 M02	and controlled by the methods employed in the operati As-sand cast As-centrifugal cast		ting and	H66 H70 H80 H85 H86	Bold Bending Hard drawn Medium-hard-drawn electrical wire Hard-drawn electrical wire			
hot working a M01 M02 M03	and controlled by the methods employed in the operati As-sand cast As-centrifugal cast As-plaster cast		ting and	H66 H70 H80 H85 H86 H90	Bold Bending Hard drawn Medium-hard-drawn electrical wire Hard-drawn electrical wire As-finned			
M01 M02 M03 M04	and controlled by the methods employed in the operati As-sand cast As-centrifugal cast As-plaster cast As-pressure die cast		ting and	H66 H70 H80 H85 H86 H90 HR01	Bold Bending Hard drawn Medium-hard-drawn electrical wire Hard-drawn electrical wire As-finned H01and stress relieved			
M01 M01 M02 M03 M04 M05	and controlled by the methods employed in the operati As-sand cast As-centrifugal cast As-plaster cast As-pressure die cast As-permanent mold cast		ting and	H66 H70 H80 H85 H86 H90 HR01 HR02	Bold Bending Hard drawn Medium-hard-drawn electrical wire Hard-drawn electrical wire As-finned H01and stress relieved H02 and stress relieved			
M01 M02 M03 M04 M05 M06	and controlled by the methods employed in the operati As-sand cast As-centrifugal cast As-plaster cast As-pressure die cast As-permanent mold cast As-investment cast		ting and	H66 H70 H80 H85 H86 H90 HR01 HR02 HR04	Bold Bending Hard drawn Medium-hard-drawn electrical wire Hard-drawn electrical wire As-finned H01and stress relieved H02 and stress relieved H04and stress relieved			
M01 M02 M03 M04 M05 M06 M07	and controlled by the methods employed in the operati As-sand cast As-centrifugal cast As-plaster cast As-pressure die cast As-permanent mold cast As-investment cast As-continuous cast		ting and	H66 H70 H80 H85 H86 H90 HR01 HR02 HR04 HR08	Bold Bending Hard drawn Medium-hard-drawn electrical wire Hard-drawn electrical wire As-finned H01and stress relieved H02 and stress relieved H04and stress relieved H08 and stress relieved			
M01 M02 M03 M04 M05 M06 M07 M10	and controlled by the methods employed in the operati As-sand cast As-centrifugal cast As-plaster cast As-pressure die cast As-permanent mold cast As-investment cast As-continuous cast As-hot forged and air coole		ting and	H66 H70 H80 H85 H86 H90 HR01 HR02 HR04 HR08 HR10	Bold Bending Hard drawn Medium-hard-drawn electrical wire Hard-drawn electrical wire As-finned H01and stress relieved H02 and stress relieved H04and stress relieved H08 and stress relieved H10and stress relieved			
M01 M02 M03 M04 M05 M06 M07 M10 M11	and controlled by the methods employed in the operati As-sand cast As-centrifugal cast As-plaster cast As-pressure die cast As-permanent mold cast As-investment cast As-continuous cast As-hot forged and air coole As-forged and quenched		ting and	H66 H70 H80 H85 H86 H90 HR01 HR02 HR04 HR08 HR10 HR20	Bold Bending Hard drawn Medium-hard-drawn electrical wire Hard-drawn electrical wire As-finned H01and stress relieved H02 and stress relieved H04and stress relieved H08 and stress relieved H10and stress relieved As-finned			
hot working a M01 M02 M03 M04 M05 M06 M07 M10 M11 M20	and controlled by the methods employed in the operati As-sand cast As-centrifugal cast As-plaster cast As-pressure die cast As-permanent mold cast As-investment cast As-continuous cast As-continuous cast As-hot forged and air coole As-forged and quenched As-hot rolled		ting and	H66 H70 H80 H85 H86 H90 HR01 HR02 HR04 HR08 HR10 HR20 HR50	Bold Bending Hard drawn Medium-hard-drawn electrical wire Hard-drawn electrical wire As-finned H01and stress relieved H02 and stress relieved H04and stress relieved H08 and stress relieved H10and stress relieved As-finned Drawn and stress relieved			

OFC Worldwide Specifications

	Natio	n	Jap	an	U	SA	U	к	Germany
	Standard No.		JISH2123		ASTMB170		BS6017		DINI787
Material Spec.	ltern		Copper Billets and Cakes		Oxygen-Free Electrolytic Copper Refinery Shapes		Oxygen-Free Refined Coper		Oxygen-Free Coper without Deoxidizer
Material Opec.	Classification		Grade 1 C1011	Grade 2 C1020	Grade 1 C10100	Grade 2 C1 0200	Cu-OFE C103	Cu-OF C110	OF-Cu 2.0040
	Chemical Composition	*2 Cu (%min)	99.99	99.96	99.99	99.95	99.99	99.95	99.95
		O2 P (ppm)	10 max 3 max	10 max NA	5 max 3 max	10 max NA	10 max 3 max	NA NA	NA NA
Related Standards of Formed Copper Products		JIS H3510 Oxygen free copper sheet, plate, strip, seamless pipe and tube, rod, bar and wire for electron devices	JIS H3100 3140 3250 3300 Copper bus bars, rods and bars, seamless pipes and tubes	ASTM F68 Oxygen free copper in wrought forms for electron devices Class 1 \$ Class 5 Class 5	ASTUM B75 B152 B248 Tube, sheet, strip, plate and rolled bar	Tube, strip, pl	0~2875 sheet, ate and d bar	DIN40500-Part4 Copper material for electrical use	

*2: Including silver

Hitachi OFC products meet all specifications above.

Material quote - C103 bulk copper

8 pieces: 130mm x 280mm x 1100mm 375kg each 8 pieces: 110mm x 130mm x 1100mm 146kg each

@ £9-70/kg for a total of 4168kg

Hot rolled to M temper to BS 2875

Delivery costs not included Can supplier perform UT and annealing?

Total cost = $\pounds40,429$

material for full RFQ

C10100 bulk copper

C10100 hot rolled copper plates temper M20 to ASTM B152 . Ultrasonically tested. Cannot confirm the grain size .

8 off pieces 130 x 280 x 1100 mm (375kg) 8 off pieces 110 x 130 x 1100 mm (146kg)

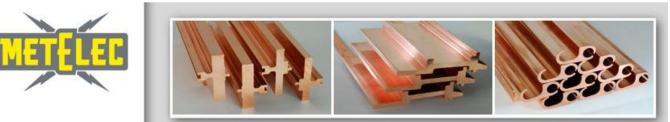
Price structure is unknown LME + £95.00 + 3.0% + conversion cost £3895.

e.g. if daily LME (15th Nov) is £5412, selling price is (£5412 + £95.00) +3% = £5672 + (conversion £3895) = £9567 per 1000 kilos.

The LME fluctuates daily so until material is fixed with the mill selling price will fluctuate appropriately.

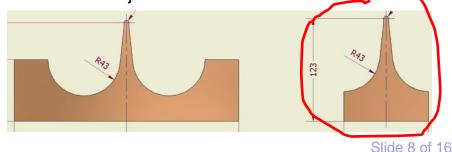
Test certificates £50.00 per occasion.

Lead time approx 5 working weeks.


Total weight = $(375 \times 8) + (146 \times 8) = 4168 \text{ kg}$

Total cost = £39,875 material for full RFQ

Copper profile quote



Metelec is a specialist stockholder and manufacturer of copper busbars, copper bar, copper profiles and copper components. Being the UK logistics arm of Gindre Duchavany, the largest manufacturer of copper extruded bars in Europe. Gindre extrude in excess of 55,000 tonnes of copper profile per annum and have a turnover in excess of €350,000,000.

Able to quote on the smaller of the two sections only length of 1 metre -0+ 100mm weight per metre 49.40 kg tooling cost £3000 manufacturing price for 500 kilos = £10.706 per kilo based on LME £4882 (14th Sep 2010).

Please note that price varies in line with the daily LME and is subject to fluctuate.

Lead time tooling 6 weeks production 6 weeks .

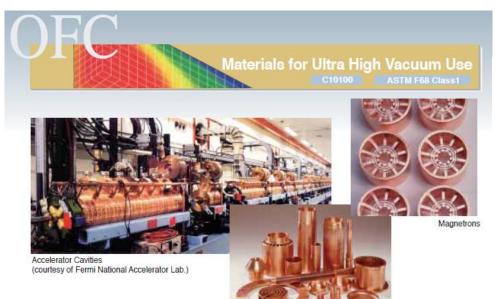
Cost comparison – extruded versus bulk

(for MINOR vane only)

		• •
Extruded: Tooling cost Weight per m Cost per kg Cost per m Cost per 8m	= £3,000 = 50 kg = £10 = £500 = £7,000 *	one 4m RFQ's minor vane material
·	ling costs are shared,	Hz RFQs could share the same (over-sized) extruded giving: 00 + (16 x £500) = £11,000 **
Bulk: Size Weight per m Cost per kg Cost per m Cost per 8m Cost per 16m	= 130mm x 110m = £146 kg = £10 = £1,460 = £11,680 * = £23,360 **	m x 1100mm one 4m RFQ's minor vane material

* Total material cost for minor vanes for a 4m long RFQ

** Total material cost for minor vanes for two 4m long RFQs



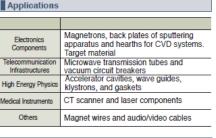
Imperial College London

Another potential supplier...

Hitachi Cable

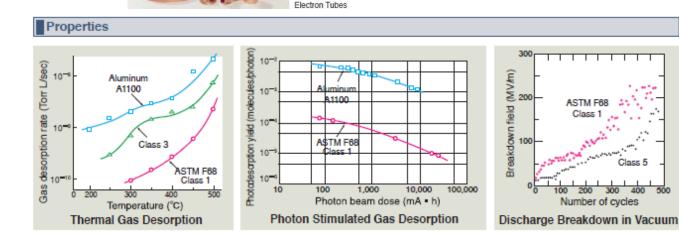
Empowering Energy & Communication

Schematic view of


degassing plant

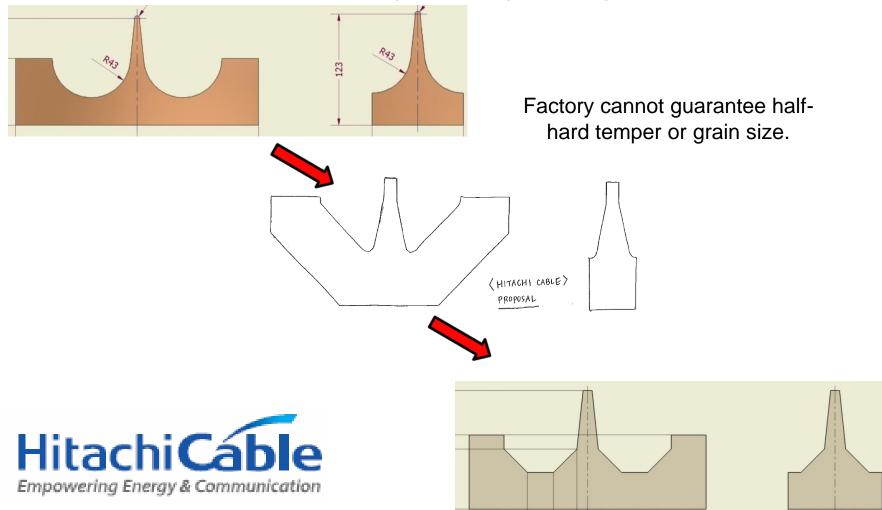
Features

- Oxygen Free Copper (OFC) is the best material for electron tubes, wave guides and other vacuum equipments because of its superb electrical and thermal conductivity.
- A Minimum-Risk of contaminations in microstructure ensures a leak tight operation.
- The vacuum degassed OFC that meets ASTM F68 Class1 is strongly recommended for its lowest gas desorption and highest discharge breakdown field.



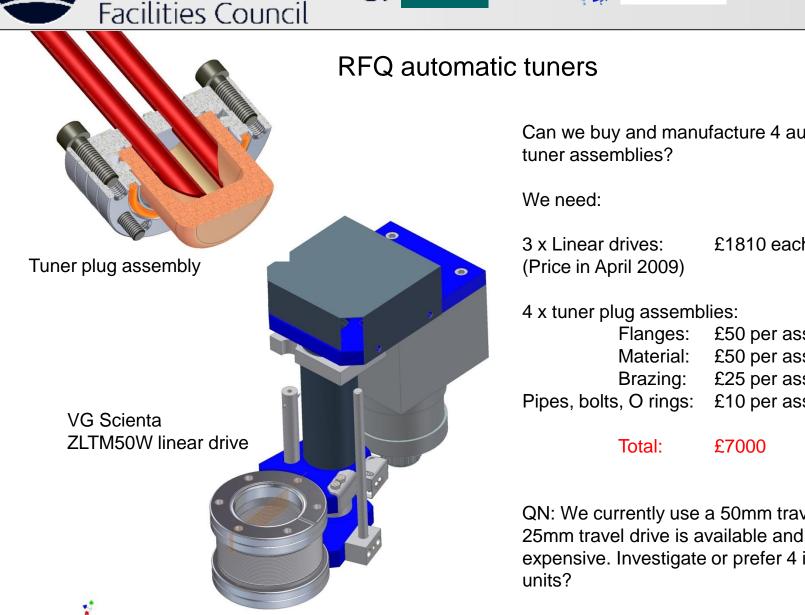
Microstructure improvement by vacuum degassing

Available Shapes


Bars, Plates, Tubes and other custom shapes upon customers' request.

Slide 10 of 16

RFQ extruded profile – quote requested



RFQ manufacturing cost

Produced a spreadsheet detailing the cost of manufacturing a one metre length of RFQ including material, manufacturing tuners, assembly rigs, transportation etc. Based upon machining time estimated at £50 per hour. All in-house items include only material cost.

Costs do not include vacuum system and RF system. Joining costs are included but for the Indium method (which is by far the least expensive). End flanges including valves, toroids and bellows are not included.

		In-house manufacture
Per RFQ <u>one metre</u> "MAJOR" vane	£21,792	£10,405
Per RFQ <u>one metre</u> "MINOR" vane	£8,636	£3,502
Total	£30,428	£13,907
Grand total (2 of each type)	£60,856	£27,814

Science & Technology

Can we buy and manufacture 4 automatic

Imperial College London

£1810 each + VAT

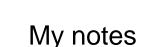
WARWICK

£50 per assembly £50 per assembly £25 per assembly £10 per assembly

QN: We currently use a 50mm travel drive. A 25mm travel drive is available and may be less expensive. Investigate or prefer 4 identical

RFQ cold model plans

- 1. It has been agreed that we should use the RFQ cold model to perform thermal and RF tests.
- 2. The first step is to perform a vacuum test on the cold model.
- 3. Flanges have been made to blank off the ports. Need to make time for the test.
- 4. Cold model transported to RH for early Jan, return to IC end Feb.
- 5. Start machining (4x) cooling pockets in Mar / Apr / May
- 6. Goal to perform RF tests summer 2011.
- 7. Waveguide required (~17m) @ 35kg per metre needs support framework.



Conclusions

- 1. I have found a supplier for bulk C10100 copper but the grain size cannot be confirmed. Do we care about grain size? If yes, could request samples at M20 temper and measure with microscope.
- 2. The total bulk material cost for a 4m RFQ is around £40K.
- 3. Extruded profile is approximately half the cost of bulk (and *presumably* reduces machining time). Not yet clear if it is available to us. Metelec could only produce extruded profile for the minor vane. Awaiting response from Hitachi Cable.
- 4. Total build cost for 1m of RFQ is around £60K (material included).
- 5. We can afford (just) to build 1m of RFQ with our present (Imperial) budget and RFQ design. Not clear if we can purchase linear drives for automatic tuners.
- 6. Daresbury have the capability to manufacture our RFQ and have shown *some* interest. More detailed discussion is required.

Thank you.

Imperial College

London

WARWICK

Tuning System:

Facilities Council

•Plan to build 4 moveable tuners.

- •Estimate cost for build (~10K check). Spend this before financial year end?
- •Make list of parts required with costs for next FETS meeting.

Science & Technology

•Output coupler: needs modification so that it can be made shorter i.e. not so visible inside the cavity. Make this a priority.

Bead pull / Royal Holloway (RH)/ Cooling:

•It has been agreed that we should make RFQ cold model thermal and RF test.

•First need to perform vacuum test - can it be done before Xmas?

•Will need a circulator – has been ordered by Spanish, delivery due in June.

•Cold model to RH for Jan and Feb. Return to IC end of Feb.

•Start manufacturing (4) cooling pockets March / April / May.

•RF test will need waveguide system.

•Saad will estimate how much waveguide we need and deduce ballpark cost.

•Waveguide planning to include two flexible sections - for either side of wall.

•What will the waveguide weigh?

•Support framework for waveguide (use wall brackets + MiniTec)

•Waveguide to coax converter will be required (but later on).

•Aim to make thermal and RF test summer 2011.

RFQ build slide for next FETS meeting:

•Material cost per metre of RFQ + material spec?

•Build cost per metre of RFQ with breakdown?

•Produce timetable.

Science & Technology (ASTEC.) ISIS (Minden College Facilities Council

WARWICK

Universidad Euskal Herriko del País Vasco Unibertsitatea