

Imperial College London

WARWICK

FETS meeting 12th January 2011

CMM Measurement Plan

by Peter Savage

Why measure the RFQ components?

- We will need to measure the manufactured RFQ components to make sure that they will perform to the designed specification.
- FEA modelling has shown the sensitivity of the performance to the size and shape of the structure.
- Need to measure the individual parts and the assembled structure to assess the effect of cumulative errors.
- Need a sensible set of measurements that tells us enough about the components without flooding us with data.
- Acts as check on movements due to joining process (if heat is involved).
- Allows us to develop the system ready for use on the real RFQ.

- 3. High Q value
- 4. Alignment
- 5. Dismantle

Science & Technology (ASTEC.) ISIS (March College London WARWICK Facilities Council

Minor vane machining tolerances							
Property	Where?	Tolerance					
Planarity	Face 1 & Face 2	+/- 0.01mm					
Parallelism	Face 1 to face 2	+/- 0.01mm					
Dimension	Between Face 1 & Face 2	+/- 0.01mm					
Dimension	Vane tip radius (R)	+/- 0.01mm					
Dimension	Vane tip centre of R from F1 or F2	+/- 0.01mm					
Dimension	Vane tip centre of R from E1 or E2	+/- 0.02mm					

Major vane machining tolerances						
Property	Where?	Tolerance				
Coplanarity	Face 1 & Face 2	+/- 0.01mm				
Dimension	Vane tip radius (R)	+/- 0.01mm				
Dimension	Vane tip centre of R from P1 / 2	+/- 0.01mm				
Dimension	Vane tip centre of R from E1	+/- 0.02mm				
Dimension	Vane tip centre of R from E2	+/- 0.02mm				

Slide 4 of 11

Science & Technology (Astec, ISIS & Imperial College Facilities Council

Mitutoyo CRYSTA APEX C9166 Coordinate-Measuring Machine (CMM) at Imperial College

We know what dimensions we need....

.... and we can simulate the performance effect due to deviations from the target dimensions

Slide 7 of 11

First step: aligning coordinate system to work-piece. 3 measurements are required

Measurement 1: Interface plane XY

Why here?

Because this is where vanes are joined. The vane tip <u>location</u> is important <u>relative</u> to this plane.

Measurement 3: Beam axis

How?

Measure vane tip radius at one end to define vane tip radius centre. Offset (perpendicular to Interface plane XY) by 6.66mm

Why here?

We need to check the location of the quadrant radii relative to the beam axis.

Measurement **2** : End plane YZ

Why here?

Because this is where the RFQ sections join to each other. The beam axis must lie perpendicular to this face

Slide 8 of 11

Aligning coordinate system to work-piece. - quick check

C = constrained		Degrees of freedom						
		Linear movement			Rotation			
Measurement	Туре	Х	Y	Z	θX	θΥ	θZ	
1	Interface plane XY			С	С	С		
2	End plane YZ	С				С	С	
3	Beam axis		С			С	С	

When the coordinate system alignment is complete all six degrees of freedom should be constrained.

Features to be measured

Vane to vane interfaces

1. Planarity

2. Section to section end faces

Facilities Council

- Planarity (individually at either end) 1.
- Parallelism between ends 2.
- 3. Distance between ends
- 4. Perpendicularity to vane to vane interfaces

3. Vane tip

- Radius (3 places along length) 1.
- 2. (Provides) centre of radius at those 3 places (creates a vane tip axis)
- Parallelism of vane tip axis to vane to vane interface 3.
- Perpendicularity of vane tip axis to end face (part of measurement 2.4) 4.
- 5. Distance to vane tip axis from vane to vane interface

4. Quadrant radii

- Radius (3 locations along length) on each side of vane 1.
- 2. (Provides) centre of radius at those 3 locations (creates a cylinder axis)
- Parallelism of cylinder axis to vane to vane interface 3.
- Perpendicularity of vane tip axis to end face (part of measurement 2.4) 4.
- 5. Location of cylinder axis w.r.t. beam axis

What to do next?

- Phil to speak to RAL inspection people?
- Finish measurement plan. Really could benefit from first measurement pass to see whether the measurements are useful / meaningful.
- Include plan for minor vane very similar.
- Work-pieces to be labelled so that measurements can be repeated.
- Measurements must be repeatable once components are assembled access will be restricted.