The first testing of the CERC and PCB Version II with cosmic rays

Catherine Fry

Imperial College London

CALICE Meeting, CERN

28th - 29th June 2004

- Prototype ECAL design
- DAQ and electronics
- The CERC
- Cosmic test setup
- The runs
- Pedestals, RMS noise and common mode

- Hodoscope data
- Wafer alignment
- Cosmic signal
- MIP, dynamic range, S/N and comparison of wafers
- Signal vs. channel
- Summary

Prototype ECAL design

- 30 layers of silicon and tungsten
- Each layer of silicon contains 3 x 3 =9 wafers
- Each wafer has 6 x 6 = 36 pads
- Each pad is 1 x 1 cm²
- Wafers have been tested: low leakage current (few nA), thickness 525μm ± 3%
- Wafers mounted on VFE PCB with conductive glue
- 2 VFE PCBs per layer, one fully-filled with 6 wafers, one half-filled with 3 wafers
- 18 channel VFE chips amplify, shape and multiplex the signals from the pads

A VFE PCB with 10(!) wafers – the one tested had just one, then two wafers mounted

DAQ and electronics

- The 30 layers of VFE PCBs are read out through 6 readout boards (CERCs) when triggered
- The readout boards are housed in a 9U VME crate

The CERC

Load firmware here

- Based on CMS tracker
 FED
- 8 FE FPGAs on left which digitise over 200 multiplexed signals through twelve 16-bit 500kHz ADC channels
- Then through FIFO to 8Mbyte memory – read out when bandwidth available
- One BE FPGA on right,
 buffers data from FE,
 performs I/O, configuration,
 control, trigger control and
 data readout
- All raw data read out, no zero suppression

8 FE FPGAs

8MByte memory (not present here)

1 BE FPGA

at LLR

Upper x and y planes of hodoscope

Silicon

Lower x and y planes of hodoscope

Crate containing 1 CERC

PC for run control and data storage

- Trigger from cosmic rays coincident in upper and lower hodoscope planes
- Each layer of hodoscope has 16 scintillator strips, slightly overlapping, but only first 8 connected
- BE firmware was not ready so PC connected to BE via RS232 interface
- Data read out straight from FE FIFO, one word at a time
- 8MByte memory not yet available so each event had to be read out before next trigger
 not a problem as cosmic rate sufficiently low
- Data stored in ASCII format

The runs

- 2 cosmic runs taken over 2 weekends in April 2004:
 - 1st run: 35,100 events
 - 2nd run: 27,100 events
- 1st run: 1 wafer present, from Moscow State University, and 4 VFE chips: 1, 4, 7 and 10 (4 and 10 connected to the wafer)
- 2nd run: Another wafer added, from Prague Academy of Sciences, read out through VFE chips 1 and 7
- For the 1st run the Russian wafer was centred between the hodoscope layers to maximise the number of cosmic triggers actually passing through the wafer
- For the 2nd run the Czech wafer was centred
- In both runs for each event the data was read out from: 16 strips of the 4 hodoscope planes and all 18 channels of all 4 VFE chips, also some configuration data and the event number
- All data stored on PC

Pedestals

Chips: white = not connected to a wafer; turquoise = connected to centred wafer; purple = connected to un-centred wafer

- Pedestals ~constant between the two runs
- ADC range: -32768 to +32767 ADC counts (16 bits)
- Pedestals are a few hundred ADC counts → only half of ADC range available

RMS noise

Chips: white = not connected to a wafer; turquoise = connected to centred wafer; purple = connected to un-centred wafer

- RMS noise 8 10 ADC counts
- Dead channels have RMS noise around 6 ADC counts 7 dead channels in 1st run, one extra dead channel in second run
- Dead channels ignored in further analysis
- Chips connected to wafers receiving cosmic rays when hodoscope triggers (4 and 10 in 1st run and 1 and 7 in 2nd run) have slightly higher noise

- Pedestals move by a few ADC counts throughout both runs for all four chips
- RMS of common mode > RMS / $\sqrt{18}$ → due to variation in common mode

Hodoscope data

Fairly smooth response over the 8 connected strips in each plane

Wafer alignment

• From the hodoscope data, interpolate the (x,y) position where the cosmic ray crossed the wafer (top plots)

CALICE Meeting, CERN, 29/06/04

Take all signals in

wafer > 40 ADC

counts (4 to 5σ)

Cosmic signal

- For each event use hodoscope data to interpolate wafer (x,y) position
- Identify the 4 closest pads to this point and subtract common mode and pedestals
- Plot signal distribution fitting a Gaussian to the pedestal to measure the noise and a Landau-Gaussian convolution and a Landau to the signal to locate the m.i.p. peak

MIP, dynamic range, S/N and wafer comparison

Value	1 st run	2 nd run
	(Russian wafer)	(Czech wafer)
Noise / ADC counts	8.64 ± 0.01	8.46 ± 0.01
Signal (L-G) / ADC counts	41.95 ± 0.05	43.08 ± 0.05
Signal (L) / ADC counts	43.35 ± 0.04	44.24 ± 0.04
S (L-G) / N	4.9 : 1.0	5.1 : 1.0
1 ADC count / keV	4.8	4.6
ADC dynamic range / m.i.p.s	800	800

- require $S / N \ge 4 : 1 \rightarrow$ we have better than requirement
- require ADC dynamic range ≥ 600 m.i.p.s → we have better than requirement
- difference in m.i.p. between wafers ± 1.3%
- wafers manufactured to thickness ± 3%
- $\Delta E \propto \Delta x \rightarrow \text{m.i.p.}$ difference consistent with possible difference in thickness
- difference in m.i.p. between fits → take L-G value and use other value to estimate systematic error

Signal vs. channel

- located signal with a Landau fit (insufficient stats per channel for Landau-Gaussian convolution to work)
- only 30 channels (out of 72) had sufficient stats to fit signal
- fit constant to each wafer:

m.i.p.₁ =
$$47.39 \pm 0.13$$

m.i.p.₂ = 48.83 ± 0.19

Cosmic signal vs. pad number

- slightly higher than values from all channels together, even with Landau fit, but bigger errors
- Need to take longer runs for more stats to better estimate the signal for each channel of VFE chip

Summary

- RMS noise 8-9 ADC counts
- Pedestals few hundred ADC counts → lose half ADC range
- Some common mode noise, few ADC counts
- 1 m.i.p. = 42 43 ADC counts
- S / N = 5 : 1 → better than required
- ADC dynamic range = 800 m.i.p.s → better than required
- m.i.p. difference between wafers consistent with possible difference in thickness
- need more stats to accurately measure signal for each channel