Application of layer-by-layer clustering to a generalised calorimeter

Chris Ainsley University of Cambridge

<ainsley@hep.phy.cam.ac.uk>

Order of service

- Generalisation of any calorimeter design to cope with a layer-by-layer approach to clustering (recap):
 - Why *generalise* the calorimeter?
 - How can it be done?
- A layer-by-layer clustering algorithm for a generalised calorimeter:
 - Description in 3 parts.
 - Organisation of code.
 - Straightforward adaptation to alternative geometries.
- Summary.

Generalising the calorimeter (1)

- Algorithms for calorimeter clustering exist, but tend to be tied to specific geometries.
- To compare relative merits of different detector designs, desirable to have an algorithm which requires minimal geometrical information ⇒ can depend only upon hit coordinates/energies.
- Could propagate clusters outwards using hit radii from IP (*i.e.* place hits on artificial spherical layers)...naturally geometry independent, but does not reflect physical detector layout \rightarrow calorimeter will not be spherical!
- Moreover, space will most likely be sampled in planes of layers ⇒ would like to preserve the natural layer-indexing in propagating clusters outwards...
- ...*however*, layers have different orientations in the barrel and the endcaps, as do different barrel staves ⇒ complications in ranking hits by layer index.
- To make use of layer indexing, need to address these in a geometryindependent way.

Generalising the calorimeter (2)

- Layer index changes discontinuously at barrel/endcap boundary.
- On crossing, jumps from *l* to 1 (first Ecal layer).

- Define a "*pseudolayer*" index based on projected intersections of physical layers.
- Index varies smoothly across boundary.
- Pseudolayer index = layer index, *except* in overlap region.

Generalising the calorimeter (3)

- Layer index changes discontinuously at boundary between overlapping barrel staves.
- On crossing, jumps from *l* to 1 (first Ecal layer.

Chris Ainsley <ainsley@hep.phy.cam.ac.uk>

- Again, define "*pseudolayer*" index from projected intersections of physical layers.
- Again, index varies smoothly across boundary.
- Again, pseudolayer index = layer index, *except* in overlap region.

Generalising the calorimeter (4)

- For any (likely) geometry, can construct a generalised calorimeter from shells of rotationally-symmetric *n*-polygonal prisms, coaxial with *z*-axis.
- Each shell contains active cells of same pseudolayer index.
- Locations/orientations of pseudolayers *automatically* encoded from locations/orientations of physical layers (projected intersections).
- Only require as inputs:
 - barrelSymmetry = rotational symmetry of barrel;
 - phi_1 = orientation of barrel w.r.t. x-axis;
 - distanceToBarrelLayers[ecalLayers+hcalLayers+2]
 - = layer positions in barrel layers ("+2" to constrain inside edge of first pseudolayer and outside edge of last pseudolayer); and
 - distanceToEndcapLayers[ecalLayers+hcalLayers+2]
 - = layer positions in endcap layers;
 - \rightarrow as geometry-independent as it's likely to get, while respecting the natural layer-indexing.
- Now just need a layer-by-layer clustering algorithm to exploit this...

Clustering: stage 1

- Form coarse clusters by tracking closely-related hits (>mipThreshold) layer-by-layer through calorimeter:
 - for a candidate hit in a given layer, l, minimize the distance, d, w.r.t all (already clustered) hits in layer l-1;
 - if d < distMax for minimum d, assign candidate hit to same cluster as hit in layer l-1 which yields minimum;
 - if not, repeat with all hits in layer *l*-2, then, if necessary, layer *l*-3, *etc.*, right through to layer *l*-layersToTrackBack;
 - after iterating over all hits in layer *l*, seed new clusters with those still unassigned, grouping those within proxSeedMax of highest weighted remaining hit into same seed;
 - assign a direction cosine to each layer l hit:
 - if in Ecal, calculate weighted centre of each cluster's hits in layer *l* (weight by energy (analogue) or density (digital)); assign a direction cosine to each hit along the line joining its cluster's centre in the seed layer (or (0,0,0) if it's a seed) to its cluster's centre in layer *l*;
 - if in Hcal, assign a direction cosine to each hit along the line from the hit to which each is linked (or (0,0,0) if it's a seed) to the hit itself;

7

iterate outwards through layers.

Clustering: stage 2

- Try to merge backward-spiralling track-like cluster-fragments with the forward propagating clusters to which they belong:
 - for each hit in the terminating layer, l, of a candidate cluster fragment, calculate the distance, p, to each hit in nearby clusters in the same layer, and the angle, γ , between their direction cosines;
 - loop over all pairs of hits;
 - if, for any pair, both:
 - *p* < proxMergeMax *and*
 - $\cos \gamma < \cos GammaMax$ are satisfied, merge clusters together into one;
 - iterate over clusters.

Clustering: stage 3

- Try to merge low multiplicity cluster "halos" (hit multiplicity < clusterSizeMin) which just fail the stage 1 clustercontinuation cuts:
 - for the highest weighted candidate hit in the seed layer, l, of a low multiplicity cluster, minimize the angle, β , w.r.t all hits in layer l-1;
 - if $\tan \beta < \texttt{tanBetaMax}$ for minimum β , merge the clusters containing the repsective hits into one;
 - if not, repeat with all hits in layer *l*-2, then, if necessary, layer *l*-3, *etc.*, right through to layer
 - *l*-layersToTrackBack;
 - if still not, repeat above steps with the next highest weighted candidate hit of the low multiplicity cluster in the seed layer, *etc.*.
 - if still not, merge the low multiplicity cluster into the nearest cluster in the same layer, provided the two clusters contain hits separated by *s* < proxMergeMax;
 - iterate over clusters.

5 GeV π^+ event: 3 stages of clustering

- One backward-spiralling track and several halo clusters surround principal cluster.
- Backward-spiralling track merged with principal cluster.
- Halo clusters merged with principal cluster.

91 GeV $Z \rightarrow u, d, s$ jets event

Reconstructed clusters

True particle clusters

Chris Ainsley <ainsley@hep.phy.cam.ac.uk> 11

How it's coded in LCIO with MARLIN(1)

- Code structured as a series of "*processors*", (requiring compilation) together with a steering file: my.steer (read at *run-time*).
- Processors to do the reconstruction:
 - CalorimeterConfig.cc
 - \rightarrow (re)sets calorimeter layer positions;
 - HitToCell.cc
 - \rightarrow merges same-cell hits (MC);
 - CellToStore.cc
 - \rightarrow stores cells above energy threshold (MC);
 - StoreToStoreOrdered.cc
 - \rightarrow ranks stored cells by weight in each pseudolayer (in preparation for clustering);
 - StoreOrderedToCluster1.cc
 - \rightarrow does the coarse cluster reconstruction;
 - Cluster1ToCluster2.cc
 - \rightarrow attempts matching of backward-spiralling track-like cluster fragments onto forward-propagating parent clusters;
 - Cluster2ToCluster3.cc
 - \rightarrow attempts to reunite low multiplicity "halo' cluster fragments with parent clusters.

- Additional processor to access MC truth: - StoreOrderedToTrueCluster.cc → forms the true clusters.
- To apply algorithm to alternative detector designs, just need to modify parameters in CalorimeterConfig.cc and my.steer, then play → quite straightforward.
- Reconstruction code itself requires *no* modification.
- Recompilation necessary only for CalorimeterConfig.cc, and then only if layer positions change.
- All other detector parameters, and all clustering cuts, set at *run-time* in my.steer.
- Let's see how ...

How it's coded in LCIO with MARLIN (2)

• Example (section of) code from my.steer (*e.g.* based on CALICE design; Si/W Ecal, Fe/RPC Hcal):

ProcessorType CalorimeterConfig			
	detectorType	full	<pre># detector type ("full" or "prototype")</pre>
	ecalLayers	40	# number of Ecal layers
	hcalLayers	40	# number of Hcal layers
	barrelSymmetry	8	# degree of rotational symmetry of barrel
	phi_1	90.0	<pre># phi offset of first barrel stave w.r.t. x-axis (in deg)</pre>
ProcessorType CellToStore			
	mode	a/d	<pre># analogue mode ("a") or digital mode ("d") for Ecal/Hcal</pre>
			# ("a/a", "a/d", "d/a" or "d/d")
	ecalMip	0.000150	# Ecal Mip energy (in GeV)
	hcalMip	0.000004	# Hcal Mip energy (in GeV)
	ecalMipThreshold	0.33333333	# Ecal Mip threshold (in Mip units)
	hcalMipThreshold	0.33333333	# Hcal Mip threshold (in Mip units)
ProcessorType StoreOrderedToCluster1			
	layersToTrackBack	80	<pre># number of layers to track back for cluster continuation</pre>
	distMax_ecal	20.0	# Ecal distance cut for cluster continuation (in mm)
	distMax_hcal	30.0	# Hcal distance cut for cluster continuation (in mm)
	proxSeedMax_ecal	20.0	# Ecal seed radius cut (in mm)
	proxSeedMax_hcal	20.0	# Hcal seed radius cut (in mm)
ProcessorType Cluster1ToCluster2			
	proxMergeMax_ecal	20.0	# Ecal proximity cut for cluster merging (in mm)
	proxMergeMax_hcal	20.0	# Hcal proximity cut for cluster merging (in mm)
	cosGammaMax	0.25	<pre># angular cut for cluster merging</pre>
ProcessorType Cluster2ToCluster3			
	clusterSizeMin	10	<pre># minimum cluster size to avert potential cluster merging</pre>
	layersToTrackBack	80	<pre># number of layers to track back for cluster merging</pre>
	tanBetaMax	6.0	<pre># angular cut for cluster merging</pre>
	proxSeedMax ecal	400.0	<pre># Ecal proximity cut for cluster merging (in mm)</pre>

How it's coded in LCIO with MARLIN (3)

• Example (section of) code from CalorimeterConfig.cc (*e.g.* based on CALICE design):

```
// Create collections for the barrel and endcap layer positions
LCCollectionVec* distanceToBarrelLayersVec = new LCCollectionVec(LCIO::LCFLOATVEC);
LCCollectionVec* distanceToEndcapLayersVec = new LCCollectionVec(LCIO::LCFLOATVEC);
// Fill the collections with their positions (in mm)
for(int l=0; l<=ecalLayers+hcalLayers+1; l++) {</pre>
  LCFloatVec* distanceToBarrelLayers = new LCFloatVec;
  LCFloatVec* distanceToEndcapLayers = new LCFloatVec;
  if(detectorType=="full") { // full detector
    if(1<=30) { // first 30 Ecal layers at a pitch of 3.9 mm (+ layer 0)
                                                                                                     \leftarrow edit
      distanceToBarrelLayers->push back(1698.85+(3.9*1));
                                                                                                     \leftarrow edit
      distanceToEndcapLayers->push back(2831.10+(3.9*1));
                                                                                                      \leftarrow edit
                                                                                                     \leftarrow edit
    else if(1>30 && l<=ecalLayers) { // last 10 Ecal layers at a pitch of 6.7 mm
                                                                                                     \leftarrow edit
      distanceToBarrelLavers->push back(1815.85+(6.7*(1-30)));
                                                                                                     \leftarrow edit
      distanceToEndcapLayers->push back(2948.10+(6.7*(1-30)));
                                                                                                     \leftarrow edit
                                                                                                     \leftarrow edit
    else { // 40 Hcal layers at a pitch of 24.5 mm (+ layer 81)
                                                                                                     \leftarrow edit
      distanceToBarrelLayers->push back(1931.25+(24.5*(1-41)));
                                                                                                     \leftarrow edit
      distanceToEndcapLayers->push back(3039.25+(24.5*(1-41)));
                                                                                                     \leftarrow edit
                                                                                                     \leftarrow edit
  }
  else if(detectorType=="prototype") { ...some more code... } // prototype detector
  distanceToBarrelLayersVec->push back(distanceToBarrelLayers);
  distanceToEndcapLayersVec->push back(distanceToEndcapLayers);
}
// And save the collections
```

```
evt->addCollection(distanceToBarrelLayersVec, "distance_barrellayers");
evt->addCollection(distanceToEndcapLayersVec, "distance_endcaplayers");
```

14

Chris Ainsley <ainsley@hep.phy.cam.ac.uk>

Summary & outlook

- Developed a scheme to enable a (pseudo)layer-by-(pseudo)layer clustering procedure to be applied to alternative calorimeter geometries without having to recode the algorithm itself.
- Straightforwardly applicable to any (likely) detector design comprising an n-fold rotationally symmetric barrel closed by endcaps \rightarrow just need to specify n, barrel orientation, and layer positions.
- Proposed such an algorithm that utilizes the high granularity of the calorimeter cells to "*track*" clusters (pseudo)layer-by-(pseudo)layer outwards (and retrospectively deal with backward-spiralling off-shoots).
- Coded in C++; LCIO (v1.3) fully compliant \rightarrow outputs cluster objects with pointers back to component hits and attributes.
- Code is modularised thanks to MARLIN ⇒ input parameters (set at runtime) kept distinct from reconstruction (pre-compiled).
- Will be publicly releasable pretty soon.

The end

That's all folks...

How the generalised detector shapes up

- Solid blue lines aligned along real, physical, sensitive layers.
- Dot-dashed magenta lines bound shell containing hits with same *pseudolayer* index, *l*.
- *Pseudostaves* automatically encoded by specifying n, ϕ_1 and R_l and Z_l ($\forall l$).

Chris Ainsley17General CALICE meeting<ainsley@hep.phy.cam.ac.uk>14-16 March 2005, NIU, De Kalb, IL, USA

Cluster-tracking between pseudolayers

From the pseudobarrel

From the pseudoendcap

Chris Ainsley <ainsley@hep.phy.cam.ac.uk>

5 GeV $\pi^+\gamma$ event at 3 cm separation

• Energy calibrated (CALICE D09 detector) according to:

 $E = \alpha [(E_{\text{Ecal}; 1-30} + 3E_{\text{Ecal}; 31-40})/E_{\text{mip}} + 20N_{\text{Hcal}}] \text{ GeV}.$

• Hits map mostly $black \leftrightarrow black(\pi^+)$ and $red \leftrightarrow red(\gamma)$ between reconstructed and true clusters.

19

• Fraction of event energy in 1:1 correspondence = 55.2 + 42.6 = 98 %.

Chris Ainsley <ainsley@hep.phy.cam.ac.uk>

5 GeV $\pi^+\gamma$ event at 5 cm separation

• Energy calibrated (CALICE D09 detector) according to:

 $E = \alpha [(E_{\text{Ecal; 1-30}} + 3E_{\text{Ecal; 31-40}})/E_{\text{mip}} + 20N_{\text{Hcal}}] \text{ GeV.}$

• Hits map mostly $black \leftrightarrow black(\gamma)$ and $red \leftrightarrow red(\pi^+)$ between reconstructed and true clusters.

20

• Fraction of event energy in 1:1 correspondence = 57.0 + 37.5 = 94 %.

Chris Ainsley <ainsley@hep.phy.cam.ac.uk>

5 GeV π^+ n event at 5 cm separation

• Energy calibrated (CALICE D09 detector) according to:

 $E = \alpha [(E_{\text{Ecal; 1-30}} + 3E_{\text{Ecal; 31-40}})/E_{\text{mip}} + 20N_{\text{Hcal}}] \text{ GeV.}$

• Hits map mostly $black \leftrightarrow black(\pi^+)$ and $red \leftrightarrow red(n)$ between reconstructed and true clusters.

21

• Fraction of event energy in 1:1 correspondence = 46.3 + 40.1 = 86 %.

Chris Ainsley <ainsley@hep.phy.cam.ac.uk>

5 GeV two-particle quality vs separation

- Goal: to distinguish charged clusters from neutral clusters in calorimeters *e.g.* $\pi^+\gamma/\pi^+n$.
- Propose a figure of merit:
 Quality = fraction of event energy that maps in a 1:1 ratio between reconstructed and true clusters.
- Quality improves with separation (naturally).
- π⁺γ separation at 5 GeV seems to be pretty good; π⁺n is somewhat tougher (n showers typically have relatively ill-defined shapes).

Calibration of π^+ , γ and n

• Energy calibrated (CALICE D09 detector) according to: $E = \alpha [(E_{\text{Ecal; 1-30}} + 3E_{\text{Ecal; 31-40}})/E_{\text{mip}} + 20N_{\text{Hcal}}] \text{ GeV.}$

Chris Ainsley <ainsley@hep.phy.cam.ac.uk>