
ALICE/2000-19
Internal Note/DAQ
20 July 2000

Assessment of
VME-PCI Interfaces
with Linux drivers

This report summarizes the performance measurements and experiences made by

testing three commercial VME-PCI interfaces with their Linux drivers. These

interfaces are manufactured by Wiener, National Instruments, and SBS Bit 3. The

developed C programs are reading/writing a VME memory in different transfer

modes via these interfaces. A dual processor HP Kayak XA-s workstation was

used with the CERN certified Red Hat Linux 6.1 running on it.

1 Introduction . 2

2 Wiener PCIVME Link 5

3 National Instruments VME-PCI8026 Kit 9

4 SBS Bit 3 Model 617 Adapter 19

5 Summary . 27

Issue: Final

Revision: 3

Reference: Assessment of VME-PCI Interfaces with Linux drivers

Created: 13 April 2000

Last Modified: 20 July 2000

Prepared by: Klaus Schossmaier, CERN - EP/AID

2 Assessment of VME-PCI Interfaces with Linux drivers
1 Introduction

TheVMEbus and PCI bus are both well proven technologies with there own

application areas. However, there are good reasons to bridge them by an VME-PCI

interface. First, if the main application runs on the VMEbus, it can be useful to

monitor and control it by a PCI-based computer. Second, since VMEbus equipment

is rather expensive, such an interface can provide access to usually cheaper PCI

system resources (e.g. processors, memory, disks). Last but not least, such interfaces

help to make a migration between these technologies more easily. In fact, several

VMEbus or PCI-based systems can be put together to a network with the help of

such interfaces. Designing and crafting a VME-PCI interface remains a challenge,

see [1], since the busses have different structures concerning the protocol (VME:

asynchronous, PCI: synchronous), speed (VME: 40 MB/s, PCI: 132 MB/s),

endianness (VME: big, PCI: little), configuration and interrupt handling.

This report presents the usage and performance of three VME-PCI interfaces from

the companies Wiener, National Instruments, and SBS Bit 3 with their Linux

drivers. They are tested by reading/writing a VME memory. The report is

organized as follows: Chapter 1 describes the test setup, summarizes the goals of

the study, and explains the method how performance data was obtained.

Chapter 2, Chapter 3, and Chapter 4 are devoted to each one of these interfaces by

giving a short description, explaining the driver installation, and presenting the

performance measurements. The last Chapter 5 shows a table that summarizes the

key features of the three VME-PCI interfaces.

1.1 Test Setup

The following figure shows the test setup, which is composed of the VMEbus side

and the PCI bus side. An interface cable connects the two sides, which is usually a

few meters long. For convention, “reading” means in this report that data is moved

from the VMEbus side to the PCI bus side, and “writing” the other way around.

VMEbus system

VME interface board

PCI-based computer

VMEbus

VMETRO analyzer

VMEbus memory

PCI bus

PCI interface board
interface cable

read

write
bridge

CPU

RAM

Introduction 3
On the VMEbus side, a 5-slot crate was used to accommodate one of the VMEbus

interface cards, a VMEbus memory (MM-6390 with 32 MB, or PME 2SB with 2MB),

and the VMETRO VTB-325B analyzer. On the PCI bus side, a HP Kayak XA-s

400SERIE0203 workstation with a dual PII@400MHz was used with Phoenix 4.6

BIOS HK.11.09US. For the specifications of this PC browse the Web page [2]. The

CERN certified Red Hat Linux 6.1 was running on it with kernel 2.2.12-12, see the

Web page [3] for further information. The PCI interface board was plugged into one

of the 5 available PCI slots on the PC.

1.2 Assessment Goals

The goals of the assessment can be expressed by the following questions:

1. How to install and configure these interfaces?

- PCI interface board: jumpers, IRQ lines

- VME interface board: jumpers, system controller

- interface cable: type, length, connector

- Linux driver: kernel version, symmetric multi-processor (SMP)

- multi-hardware installation

2. How to program a test application?

- C library functions, system calls, utilities

- manuals, support

3. Which transfer modes are possible?

- reading/writing

- A16, A24, A32 addressing

- D8, D16, D32, D64 data width

- byte/word swapping

- Programmed I/O (PIO) transfer

- Direct Memory Access (DMA) transfer

- Memory Mapping (MM) transfer

- non-aligned access

- concurrent access

4. What is the performance of each transfer mode?

- seen on the VMEbus (bus cycles)

- seen from the program (timing of function calls)

1.3 Timing Measurements

The aim of the timing measurements on a VME-PCI interface is to produce a graph,

which displays the transfer length on the x-axis and the corresponding duration for

it on the y-axis, for the different transfer modes. The setup time and transfer rate

can be obtained from such a graph. For that purpose, test C programs were

developed to time the specific code segment (function calls or loop) that is actually

responsible for the data transfer. The timing results are logged in file timing.dat .

Each test run executes an other loop, where a random transfer length is picked, and

an inner loop, where 100 transfers of this length are carried out. Thus we are getting

100 timing results for a certain transfer length. The 10 smallest and the 10 largest

values are discarded, and the average of the remaining 80 values is used as

duration for this transfer length. The distribution of the duration over a certain

transfer length is not shown, since this is beyond the scope of the assessment.

4 Assessment of VME-PCI Interfaces with Linux drivers
The following Perl-script timing.perl computes these length-duration points

and puts them in file timing.plot :

1: $filename = "timing.dat";
2: open(IN,"<$filename") || die "cannot open $filename";
3: $filename = "timing.plot";
4: open(OUT,">$filename") || die "cannot open $filename";
5: $loop_inner = 100;
6: $skip = 10;
7: while($line = <IN>) {

@col = split(/ /,$line);
$bytes = shift @col;
@times = sort { $a <=> $b} @col;
$sum = 0;
for ($i=1+$skip; $i<=($loop_inner-$skip); ++$i)
 {$sum += $times[$i];}
$average = $sum / ($loop_inner - 2*$skip);
print OUT "$bytes $average \n";

8: }
9: print OUT "0.0 0.0 \n";

10: close(IN);
11: close(OUT);

Afterwards the following gnuplot-script timing.gnu transfers the length-

duration points in file timing.plot to the Postscript-file timing.ps that

contains the desired graph:

1: set terminal postscript eps color "Times-Roman"
2: set output "timing.ps"
3: set format y "%.2f"
4: set grid
5: set title "VME-PCI interface ... using ... for ..."
6: set xlabel "bytes"
7: set ylabel "microseconds"
8: plot [][] "timing.plot" with points
9: exit

The next chapters will show several graphs produced in this way. Right away, it

should be pointed out that performance data depends significantly on the VMEbus

device. For example, a too slow VMEbus memory can spoil the performance

measurements of a VME-PCI interface.

The timing results were checked with the measurements taken by the VMETRO

analyzer. They are presented be a table showing the access time, address modifier

(AM), VMEbus address, data, size, cycle and throughput in MB/s.

1.4 Acronyms

The following acronyms are frequently used throughout the document:

IRQ = interrupt request

SMP = symmetric multi-processor

PIO = programmed I/O

DMA = direct memory access

MM = memory mapping

AM = address modifier

MB/s = megabyte/second

Wiener PCIVME Link 5
2 Wiener PCIVME Link

2.1 Description

The Wiener PCIVME link consists of a single-slot VMEbus card (called VMEMM)

and a PCI card (called PCIADA). They are connected by a up to 10 meters SCSI-2

cable. Users get direct access to the VMEbus with A16/24/32 addressing and

D8/16/32 transfer size. Further information about the hardware and configuration

of the Wiener PCIVME link can be found at the Web page [4]. The product comes

only with drivers for Windows 95/NT, but [5] has developed drivers for the Linux

operation system. In my setup the arwvme.1.46 driver (initially arwvme.1.43)

was used. In the following the installation procedure and the performance results

will be presented. It is worth noting that there is no US ban on this product.

2.2 Driver Installation

1. Login as root

2. Download the driver:

http://www-ik3.fzk.de/~mathes/software/arwvme.1.46.tar.gz
into /usr/local

3. Unpack the archive:

cd /usr/local
tar vxfz arwvme.1.46.tar.gz
mv arwvme arwvme-1.46
cd arwvme-1.46/driver

4. Edit the Makefile (if necessary):

modify KERNEL_HDRS = /usr/local/include/linux

modify # DEFINES += -DUSE_ISA_MAPPING

modify # DEFINES += -DDEBUG

modify /sbin/depmod -a
modify /sbin/rmmod -a

5. Compile the kernel module:

make
make install
Check: # ls -l /dev/arw*

6. Load the kernel module:

mv arwvme.o arwvme-1.46
/sbin/insmod arwvme-1.46
Check: # /sbin/lsmod
Check: # tail -50 /var/log/messages
Check: # cat /proc/pci

7. Installing the library:

cd /usr/local/arwvme-1.46
xmkmf
make depend
make

8. Simple tests:

6 Assessment of VME-PCI Interfaces with Linux drivers
cd /usr/local/arwvme-1.46
test_mix
test_map

When loading the driver, make sure that both cards (PCIADA and VMEMM) are in

operation and that the SCSI cable is in place. Keep in mind that the PCIADA board

cannot share PCI interrupts, thus a proper PCI interrupt assignment at boot-time

must be achieved. In general, this problem is alleviated if the Linux kernel is in

SMP mode. However, an attempt to compile the driver under an SMP kernel with a

properly modified Makefile failed. In any case, at compilation there will be a few

warnings, which can be ignored. A data transfer is indicated by the flashing LEDs.

Ignore any SYSFAIL LEDs on other VMEbus boards, since they will be cleared

when the interface is used for the first time. Make sure that the VMEMM is

operated as VMEbus master by setting the SC jumpers, since in my setup it did not

work as VMEbus slave. When the interface is plugged in and the PC boots (or on

other occasions, which could not be specified), a VMEbus reset might be triggered.

Another shortcoming is the fact, that there is no Makefile template provided for

user programs, thus all test programs were running as root .

If the interface is not responding after the above checks, it may become necessary to

remap the PCIVME access addresses from below 1 MB to high addresses. This can

be done with the PLXMON tool, which is included on the CD-ROM (Version 1.1

ARW 6-99). It also offers a test under DOS (of course without the arwvme driver) to

check the connection between the two cards. Documentation of this tool can be

found on the Web page [6]. In my setup it was necessary to reprogram the PLX9050

chip with the help of this tool. The following instructions give you an example how

to use the PLXMON tool:

1. Make a MS-DOS-bootable disk.

2. Create a folder PLXMON and copy the files PLXMON.EXE, EEP50V.MON and

EEP50VH.MON into this folder.

3. Boot the PC in MS-DOS mode.

4. Change to folder PLXMON and start PLXMON.EXE.

5. Type in the following PLXMON commands:

At start-up the program shows a list of found PCI devices. A star indicates the

first found device with VenID:DevID equal 0x10b5:0x9050.

&pcr
This command shows an address list of the PCI configuration registers. Verify if

the entry at offset 0x02c equals to 0x11679050.

&read eep50vh.mon
This command changes the information stored in the configuration EEPROM.

To undo this reprogramming, use the file eep50v.mon .

&lcr 50 18054184
&pcr
&dw fedf6000;r
This command displays 0x80 bytes of memory starting at address 0xfedf6000.

Do not type the 0x prefix. If the protocol between PCIADA and VMEMM is

working, the pattern 1118 will appear. With the appended ;r the range of

memory is displayed repeatedly.

&q

Wiener PCIVME Link 7
2.3 Data Transfer

Only the PIO transfer was working in my setup with the provided C library

functions. Trying out memory mapping accesses had no effect on the VMEbus.

DMA or VME64 transfers are not supported by design. In the following the

programming, the VMEbus cycles and the timing of PIO writing/reading transfers

will be presented.

◆ Programming for PIO writing:

1: arwvme_fd = ArwvmeOpen(1);
2: ArwvmeSetMode (arwvme_fd,

ARWVME_A32|ARWVME_D32|ARWVME_DATA|ARWVME_NONPRIV);
3: lseek (arwvme_fd, address_vme, SEEK_SET);
4: ArwvmeWrite (arwvme_fd, buffer_pci, length);
5: ArwvmeShutdown(arwvme_fd);

◆ VMEbus cycles for PIO writing (16 KB length):

◆ Programming for PIO reading:

1: arwvme_fd = ArwvmeOpen(1);
2: ArwvmeSetMode (arwvme_fd,

ARWVME_A32|ARWVME_D32|ARWVME_DATA|ARWVME_NONPRIV);
3: lseek (arwvme_fd, address_vme, SEEK_SET);
4: ArwvmeRead (arwvme_fd, buffer_pci, length);
5: ArwvmeShutdown(arwvme_fd);

◆ VMEbus cycles for PIO reading (16 KB length):

◆ Timing for PIO writing/reading:

The following graph displays the access times over the transfer lengths for both

PIO reading and writing. There exists a linear relation with a rather large variation

of the points. Roughly speaking, 0.3 MB/s with no setup time can be achieved for

PIO reading, and 1.1 MB/s with no setup time for PIO writing. This confirms also

the measurements taken by VMETRO.

VMEbus • Wiener • writing A32D32 with PIO

Time AM Address Data Size Cycle MBytes/s

11 µs 09 32 bit 32 bit LONG WRI 0.37

VMEbus • Wiener • reading A32D32 with PIO

Time AM Address Data Size Cycle MBytes/s

3 µs 09 32 bit 32 bit LONG RD 1.29

8 Assessment of VME-PCI Interfaces with Linux drivers
◆ Access to non-existing VME address:

In case of a read or write access to an unused VMEbus address (no board in the

crate responds), the running program exits. This is not convenient for an

application that uses this interface, since it cannot be catched.

◆ Non-aligned access for PIO writing/reading:

If the start address is non-aligned, a BERR occurs, and if the length is non-aligned,

pre-reads are carried out. No further details are presented, since this issue would

only be of interest for DMA transfers.

◆ Concurrent access:

When several concurrent processes running on the PC try to access the Wiener

PCIVME link, only the first one can call function ArwvmeOpen() successfully.

Processes coming afterwards fail to do so. Hence only one process at a time can use

the interface. Note that calling function ArwvmeOpen() twice within the same

program also fails.

◆ Multi-hardware installation:

According to the manual, the driver allows an arbitrary number of PCIVME links,

however, besides the number of available PCI slots there is a limit of 16 due to the

VMEMM jumpers. The parameter in function ArwvmeOpen() determinates which

links will be used. In my setup only one link was tested.

0.00

20.00

40.00

60.00

80.00

100.00

0 2 4 6 8 10 12 14 16 18

m
il

li
se

co
nd

s

KB

WIENER PCIVME Link with arwvme-1.46 driver

"timing.WIENER.ArwvmeRead"
"timing.WIENER.ArwvmeWrite"

National Instruments VME-PCI8026 Kit 9
3 National Instruments VME-PCI8026 Kit

3.1 Description

The NI VME-PCI8026 kit consists of a single-slot, double-height VMEbus device

(called VME-MXI-2) and a half-size PCI circuit board (called PCI-MXI-2). They are

connected by a MXI-2 cable with a maximum length of 20 meters. Users get direct

access to the VMEbus with A16/24/32 addressing and D8/16/32/64 transfer size.

More information about the VME-PCI8026 kit can be found in the manual [7] and

[8]. The product comes with a driver for Linux running kernel 2.2.x. In my setup I

was using version 1.6 of the driver (initially beta version 0.5). This driver provides

an interface to the NI-VXI library functions. Programming information about them

can be found in the manual [9] and [10]. In addition, LabVIEWTM can be used for

programming applications. In the following the installation procedure and the

performance results will be presented.

3.2 Driver Installation

1. Login as root

2. Download and unpack the driver:

cd /afs/cern.ch/sw/natinst/drivers/pci-mxi/linux-1.6
mkdir /usr/local/linux871
cp linux871_mxi2.tgz /usr/local/linux871
cd /usr/local/linux871
tar xvzf linux871_mxi2.tgz
rpm -ivh nivxi-pcimxi-1.6-1.i386.rpm
rpm -ivh nivisa-2.0.1-2.i386.rpm

3. Compile the kernel module:

cd /usr/local/nivxi/src
make

4. Install shared libraries:

echo ’/usr/local/nivxi/lib’ >> /etc/ld.so.conf
/sbin/ldconfig

5. Load the kernel module:

cd /usr/local/nivxi/sys
mv vxi vxi-1.6
ln -s vxi-1.6 vxi
./load_vxi
Check: # /sbin/lsmod
Check: # tail -50 /var/log/messages
Check: # cat /proc/pci

6. Loading the kernel module at boot time:

Add the command /usr/local/nivxi/sys/load_vxi in file

/etc/rc.d/rc.local.
Another way is to edit the file /etc/conf.modules accordingly.

7. Configure the VME devices (e.g. memory):

cd /usr/local/nivxi/bin
resman

10 Assessment of VME-PCI Interfaces with Linux drivers
vxitedit
7 add vmeMemory 1 2 0 0 1 2MB Pless y 0 0 0xc00000 0x1fffff
0x03c00000 0x1fffff 0 0 1 save exit 12
resman
Check: # vxitedit
type: 1 di exit 12

8. Simple test with VXIbus Text Interactive Control (victext):

/usr/local/nivxi/bin/victext
vxiin 2,0xc00000,2
vxiout 2,0xc00000,2,0x1234
deviceinformation?
quit

Loading the kernel module usually works without problems, but removing it with

/usr/local/nivxi/sys/unload_vxi sometimes fails. In this case execute

/usr/local/nivxi/bin/vxiclean . This also helps when the resource

manager resman failed (e.g. driver busy) or hangs. You must run resman each

time the VME chassis power is cycled. The VXI driver has to be loaded before

resman can be executed. If VXI bus timeout settings are not properly set, resman
can be delayed (once I experienced around 30 seconds). By default the VME-MXI-2

card has logical address 1, which can be changed by the DIP switch. However,

using the VMEbus memory PME 2SB with 2MB, I needed to change it to 16,

otherwise resman did not succeed (error code 12). Since the VME-MXI-2 card has a

VMEbus system controller detection, no further hardware configurations were

necessary. On the other side, the interface has a lot of software parameters attached,

which are managed by the vxitedit tool. Be careful when configuring VMEbus

devices (proper base address, size, in system, etc.), especially when you change

boards in the crate. Do not forget to run resman after any modification.

Concerning the PCI-MXI-2 card, no hardware configurations were necessary. This

card is able to share PCI interrupts lines.

Running the kernel module under SMP is not supported, but there is a way to make

it working:

cd /usr/local/nivxi/src
edit Makefile such that CFLAGS is set to -D__SMP__ -DMODVERSIONS
-include /usr/src/linux/include/linux/modversions-smp.h
make clean
make
cd /usr/local/nivxi/sys
mv vxi vxi-1.6smp
ln -s vxi-1.6smp vxi
/usr/local/nivxi/sys/load_vxi

3.3 Data Transfer

The MXI-2 interface transfers data in PIO, DMA (also for VME64) and memory

mapped mode. A single access to a byte/word/longword is also possible. The

different transfer modes are achieved by calling the NI-VXI library function

VXIMove() passing certain parameters. To use this library, all C programs must

call InitVXIlibrary() to initialize the driver and CloseVXIlibrary() to free

the resources. If the transfer was going well, VXIMove() returns 0. There are many

other NI-VXI system configuration functions, but their use will no be shown here.

National Instruments VME-PCI8026 Kit 11
In the following the programming, the VMEbus cycles and the timing of the four

transfer modes will be presented.

3.3.1 PIO Transfer

◆ Programming for PIO writing:

1: #define SPACE_A32 0x0003
2: #define SPACE_LOCAL 0x0000
3: #define ENDIAN_BIG 0x0000
4: #define UNIT 4
5: mode = SPACE_A32|ENDIAN_BIG;
6: ret = VXImove (SPACE_LOCAL|ENDIAN_BIG, buffer_pci, mode

address_vme, length, UNIT);

◆ VMEbus cycles for PIO writing (16 KB):

◆ Programming for PIO reading:

1: #define SPACE_A32 0x0003
1: #define SPACE_LOCAL 0x0000
2: #define ENDIAN_BIG 0x0000
3: #define UNIT 4
4: mode = SPACE_A32|ENDIAN_BIG;
5: ret = VXImove (mode, address_vme, SPACE_LOCAL|ENDIAN_BIG,

buffer_pci, length, UNIT);

◆ VMEbus cycles for PIO reading (16 KB):

◆ Timing for PIO writing/reading:

The following graph displays the access times over the transfer lengths for both

PIO reading and writing. There exists a linear relation for PIO writing of about 8.3

MB/s with no setup time. In case of PIO reading, the plot shows a performance of

8.0 MB/s with no setup time when the transfer length is below 4 KB (page size).

Then every 4 KB there are steps of up to 200 µs, which is already indicated by the

VMETRO measurements.

VMEbus • National Instruments • writing A32D32 with PIO

Time AM Address Data Size Cycle MBytes/s

470 ns

86 µs at *4 KB
09 32 bit 32 bit LONG WRI 8.65

VMEbus • National Instruments • reading A32D32 with PIO

Time AM Address Data Size Cycle MBytes/s

490 ns

86 µs at *4 KB
09 32 bit 32 bit LONG RD 7.3

12 Assessment of VME-PCI Interfaces with Linux drivers
◆ Access to non-existing VME address:

In case of a read or write access to an unused VMEbus address (no board in the

crate responds), function VXIMove() returns -1. This applies also to the other

transfer modes.

However, in my setup VXIMove() returned -9 from time to time, when the transfer

length exceeded 4KB. The Ethernet card 100BT/100TX NightDIRECTOR/100 in the

PC was responsible for this problem, since removing this card or replacing it with

another one (Intel 82557 Ethernet Pro 100) solved it. Also this applies to the other

transfer modes.

3.3.2 DMA Transfer

◆ Programming for DMA reading:

1: #define SPACE_A32 0x0003
2: #define SPACE_LOCAL 0x0000
3: #define ENDIAN_BIG 0x0000
4: #define ACCESS_BLOCK 0x0010
5: #define UNIT 4
6: mode = SPACE_A32|ENDIAN_BIG|ACCESS_BLOCK;
7: ret = VXImove (mode, address_vme, SPACE_LOCAL|ENDIAN_BIG,

buffer_pci, length, UNIT);

0.00

0.50

1.00

1.50

2.00

2.50

3.00

0 2 4 6 8 10 12 14 16 18

m
il

li
se

co
nd

s

KB

NI VME-PCI8026 with linux-1.6 driver

"timing.MXI-2.PIO.read"
"timing.MXI-2.PIO.write"

National Instruments VME-PCI8026 Kit 13

not
ed
ata
◆ VMEbus cycles for DMA reading (16 KB):

◆ DMA writing:
This can be programmed in a similar way, but the Linux driver version 1.6 is
implemented for it. In fact, alternating WBLK and WRI cycles can be observ
on the VMEbus, but the performance is not better than PIO writing and the d
are corrupted.

◆ Timing for DMA reading:

The following graph displays the access times over the transfer lengths for DMA

reading. The graph with “+”-points represents the measurements in my setup,

showing steps at every 4KB of up to 200 µs and a peak rate of 16.0 MB/s. Taking

this into account, a sustained rate of approximately 11.5MB/s with 50 µs setup time

can be calculated. The graph with “x”-points represents the measurements of

another setup, where under the same conditions steady 16.0 MB/s with 50 µs setup

time could be achieved.

VMEbus • National Instruments • reading A32D32 with DMA

Time AM Address Data Size Cycle MBytes/s

250 ns 0B 32 bit 32 bit LONG RBLK

11.56790 ns at *256 B

86 µs at *4 KB
0B 32 bit 32 bit LONG RD

0.00

0.50

1.00

1.50

2.00

0 2 4 6 8 10 12 14 16 18

m
il

li
se

co
nd

s

KB

NI VME-PCI8026 with linux-1.6 driver

"timing.MXI-2.DMA.read"
"timing.MXI-2.DMA.chipset.read"

14 Assessment of VME-PCI Interfaces with Linux drivers
Many tests took place to find out the reason for this behavior. Also with the help of

a PCI analyzer, no clear answer could be found. Testing 10 different PCs revealed

that it has most likely to do with the chipset or the NI-VXI driver software itself. For

example, PCs with chipset 440BX did not perform well, whereas chipset VIA

VT82C693 brought good results. For further details see the report [11]. Hence the

DMA reading performance of the MXI-2 interface depends significantly on the

motherboard of the PC.

◆ Non-aligned access for DMA reading:

The following table shows the results when non-aligned accesses are made on the

VMEbus. A non-aligned length is prohibited by programming. If the start address

is non-aligned, additional byte/word accesses take place, but data is missing in the

reading buffer on the PC. If both the start address and the length is aligned, no

pre-reads could be observed and the data was complete. This was also true for a

transfer with 300 bytes (0x12C), 400 bytes (0x190), or 500 (0x1F4) bytes. Aligned

accesses for A32D64 were also correct, but in non-aligned cases data was missing

and even corrupted.

3.4 VME64 Transfer

◆ Programming for VME64 reading:

1: #define SPACE_A32 0x0003
2: #define SPACE_LOCAL 0x0000
3: #define ENDIAN_BIG 0x0000
4: #define ACCESS_VME64 0x0018
5: #define UNIT 4
6: mode = SPACE_A32|ENDIAN_BIG|ACCESS_VME64;
7: ret = VXImove (mode, address_vme, SPACE_LOCAL|ENDIAN_BIG,

buffer_pci, length, UNIT);

VMEbus • National Instruments • non-aligned reading A32D32 with DMA

Length
Start

0x100 0x101 0x102 0x103

0x03C00000
256 bytes read,

data complete
not allowed not allowed not allowed

0x03C00001
259 bytes read,

3 bytes missing
not allowed not allowed not allowed

0x03C00002
258 bytes read,

4 bytes missing
not allowed not allowed not allowed

0x03C00003
257 bytes read,

4 bytes missing
not allowed not allowed not allowed

National Instruments VME-PCI8026 Kit 15
◆ VMEbus cycles for VME64 reading (16 KB):

◆ VME64 writing:
This is also not implemented in the Linux driver version 1.6, thus there is no
need to program VME64 writing.

◆ Timing for VME64 reading:

The following graph displays the access times over the transfer lengths for VME64

reading. Again, the graph with “+”-points represents the measurements in my

setup, showing steps at every 4KB of up to 200 µs and a peak rate of 21.3 MB/s.

Taking this into account, a sustained rate of approximately 13.6 MB/s with 50 µs

setup time can be calculated. With the other setup under the same conditions,

steady 21.0 MB/s with 50 µs setup time could be achieved shown in the “x”-points.

Hence we are facing the same problem as for DMA reading, see Chapter 3.3.2.

◆ Timing for DMA /VME64 reading up 32 MB:

The following graph displays the access times over the transfer lengths up to 32 MB

for DMA and VME64 reading, where the NI-VXI driver was running on an SMP

VMEbus • National Instruments • reading A32D64 with DMA

Time AM Address Data Size Cycle MBytes/s

330 ns 08 64 bit D64 RMBL

14.28650 ns at *256 B

87 µs at *4 KB
08 32 bit --- A-MBLT RD

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

0 2 4 6 8 10 12 14 16 18

m
il

li
se

co
nd

s

KB

NI VME-PCI8026 with linux-1.6 driver

"timing.MXI-2.VME64.read"
"timing.MXI-2.VME64.chipset.read"

16 Assessment of VME-PCI Interfaces with Linux drivers
kernel. On this scale, the problems with the steps are inferior, ending up in a rate of

11.6 MB/s for DMA reading, and 13.7 MB/s for VME64 reading. Remember that 16

MB/s and 21.3 MB/s are the corresponding maximum rates. However, there is

another problem when carrying out tests with large transfer lengths (approx. 8 MB)

over a longer period of time (approx. 30 minutes), since the program may exits

occasionally with “bus error”. So far no explanation could be found for this

behavior, thus more systematic test runs are needed here.

3.4.1 Memory Mapping Transfer

◆ Programming for MM writing:

1: #define SPACE_A32 0x0003
2: #define ACCESS_ONLY 0x0000
3: #define ENDIAN_BIG 0x0000
4: #define ACCESS_LONGWORD 4
5: #define WINDOW_SIZE 0x200000
6: MapVXIAddressSize (WINDOW_SIZE);
7: address_pci =

(UINT32*) MapVXIAddress (SPACE_A32|ACCESS_ONLY|ENDIAN_BIG,
address_vme, 2000L, &window, &ret);

8: for (i=0; i<length; i++)
VXIpoke (address_pci+i, ACCESS_LONGWORD, *(buffer_pci+i));

9: UnMapVXIAddress (window);

◆ VMEbus cycles for MM reading (16 KB):

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

0 5 10 15 20 25 30 35

se
co

nd
s

MB

NI VME-PCI8026 with linux-1.6 driver

"timing.MXI-2.DMA.32MB.read"
"timing.MXI-2.VME64.32MB.read"

VMEbus• National Instruments • writing A32D32 with MM

Time AM Address Data Size Cycle MBytes/s

910 ns 09 32 bit 32 bit LONG WRI 4.45

National Instruments VME-PCI8026 Kit 17
◆ Programming for MM reading:

1: #define SPACE_A32 0x0003
2: #define ACCESS_ONLY 0x0000
3: #define ENDIAN_BIG 0x0000
4: #define ACCESS_LONGWORD 4
5: define WINDOW_SIZE 0x200000
6: MapVXIAddressSize (WINDOW_SIZE);
7: address_pci =

(UINT32*) MapVXIAddress (SPACE_A32|ACCESS_ONLY|ENDIAN_BIG,
address_vme, 2000L, &window, &ret);

8: for (i=0; i<length; i++)
VXIpeek (address_pci+i, ACCESS_LONGWORD, buffer_pci+i);

9: UnMapVXIAddress (window);

◆ VMEbus cycles for MM reading (16 KB):

◆ Timing for MM reading/writing:

The following graph displays the access times over the transfer lengths for both

MM reading and writing. There exists a linear relation with no setup time for MM

reading with 2.1 MB/s, and for MM writing with 4.2 MB/s. No anomalies could be

observed under this transfer mode. Note that window size can be up to 2 GB,

which need to be set/checked by function MapVXIAddressSize() before the

mapping is established with function MapVXIAddress() .

VMEbus • National Instruments • reading A32D32 with MM

Time AM Address Data Size Cycle MBytes/s

1.75 µs 09 32 bit 32 bit LONG RD 2.28

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

0 2 4 6 8 10 12 14 16 18

m
il

li
se

co
nd

s

KB

NI VME-PCI8026 with linux-1.6 driver

"timing.MXI-2.map.read"
"timing.MXI-2.map.write"

18 Assessment of VME-PCI Interfaces with Linux drivers
3.5 Concurrent Access

If two concurrent processes running on the PC are accessing the same MXI-2

interface, any combination of transfer modes is working properly. The following

table shows all combinations that have been tested and since each one is working

(label ok), the processes share the interface without problems.

3.6 Multi-hardware Installation

You cannot have multiple PCI-MXI-2 cards in a PC yet, but NI announced that the

new release of NI-VXI driver 3.0 can handle it. However, several VME-MXI-2

extender cards can be daisy-chained by MXI-2 cables, as long as to total length is

below 20 meters. In my setup, only one MXI-2 interface was tested.

2 processes • National Instruments • concurrent access

access
PIO
read

PIO
write

DMA
read

VME64
read

MM
read

MM
write

PIO
read

ok ok ok ok ok ok

PIO
write

ok ok ok ok ok

DMA
read

ok ok ok ok

VME64
read

ok ok ok

MM
read

ok ok

MM
write

ok

SBS Bit 3 Model 617 Adapter 19
4 SBS Bit 3 Model 617 Adapter

4.1 Description

The SBS Bit 3 Model 617 Adapter consists of a single-slot, double-height VMEbus

adapter card and a half-size PCI adapter card. They are connected by a round

EMI-shielded cable with 7.5 meters as maximum length. For a longer length

requirement, consider SBS Bit 3 Model 618 or 620, since they have a fiber cable,

where you can go out to 500 meters. Users get direct access to the VMEbus with

A16/24/32 addressing and D8/16/32 transfer size. Further information about the

hardware and handling of the 617 Adapter can be found in the manual [12]. The

product comes with device drivers for Windows 95/98/NT, AIX, Solaris, etc., but

not for the Linux operating systems. Fortunately, [13] has developed such drivers

for Linux and in my setup the vmehb-2.2.6 driver (initially vmehb-2.2.2) was

used. In the following the installation procedure and the performance results will

be presented.

4.2 Driver Installation

1. Login as root

2. Download and unpack the driver:

mkdir /usr/local/vmehb-2.2.6
cd /usr/local/vmehb-2.2.6
download

ftp.nikhef.nl/pub/projects/vmehb/ftp/vmehb-2.2.6.tar.gz into

/usr/local/vmehb-2.2.6
tar vxfz vmehb-2.2.6.tar.gz

3. Set up devices and man-pages:

make devices
Check: # ls -l /dev/vme*
make man
In case of problems: # groff -Tascii -man vmehb.8 > vmehb.man
make help

4. Compile the kernel module:

make

5. Load the kernel module:

insmod vmehb-2.2.6-2.2.12-20.o
Check: # /sbin/lsmod
Check: # tail -50 /var/log/messages
Check: # cat /proc/pci

6. Loading the kernel module at boot time:

place the command insmod vmehb-2.2.6-2.2.12-20.o in file

/etc/rc.d/rc.local

7. Simple tests:

cd /usr/local/vmehb-2.2.6
vmetst

20 Assessment of VME-PCI Interfaces with Linux drivers
In version 2.2.6 the Makefile detects if Linux is running in SMP mode or not.

Depending on that, the kernel modules vmehb-2.2.6-2.2.12-20.o or

vmehb-2.2.6-2.2.12-20smp.o were build in my setup. The minimal

SMP_NEWFLAG flag in Makefile I could find out is -DLIN2_2 -w
-DEXPORT_SYMTAB -D__SMP__ -DMODVERSIONS -include
/usr/src/linux/include/linux/modversions-smp.h . Loading the driver

can be sometimes a problem, since the PCI card of the Model 617 adapter cannot

share interrupts, see Chapter 2.2. You must reload the vmehb driver each time the

VME chassis power is cycled, but no reboot is necessary. When memory mapped

transfers took place, unloading the driver fails, since the module count is not

maintained properly. In this case only a reboot helps. A few customizations are

possible to the vmehb driver by modifying the vmehb_conf.h file. For example,

the DMA buffer size can be set by the macro MAX_DMA_SIZE, or the address

modifier (AM) of the various transfer modes by changing the am field of the

vme_config[] structure. Remark that the VMEbus adapter card of the 617 Model

has many jumpers to set (system controller, VMEbus arbitration, interrupts, etc.).

No software tool is available to override these settings.

4.3 Data Transfer

The Model 617 Adapter transfers data in PIO, DMA and memory mapped mode,

but VME64 is not supported. The different transfer modes are achieved by opening

resp. closing a certain UNIX devices with the open() resp. close() system call.

For example device /dev/vme24d32 means A24 addressing and D32 transfer size

in PIO mode. The programming is straightforward with read() , write() ,

leek() , and mmap() system calls. Note that all length parameters must be given

in bytes. In the MM mode, the type of the pointer determinates the transfer size, not

the opened device. Also some ioctl() calls are implemented, but they are only

for special use. In the following the programming, the VMEbus cycles and the

timing of the three transfer modes will be presented.

4.3.1 PIO Transfer

◆ Programming for PIO writing:

1: #define VMEHB_DEV "/dev/vme32d32"
2: vmehb_fd = open (VMEHB_DEV, O_RDWR);
3: lseek (vmehb_fd, address_vme, SEEK_SET);
4: cnt = write (vmehb_fd, buffer_pci, length);
5: close (vmehb_fd);

◆ VMEbus cycles for PIO writing (16 KB):

◆ Programming for PIO reading:

VMEbus • SBS Bit 3 • writing A32D32 with PIO

Time AM Address Data Size Cycle MBytes/s

370 ns 0D 32 bit 32 bit LONG WRI 10.5

SBS Bit 3 Model 617 Adapter 21
1: #define VMEHB_DEV "/dev/vme32d32"
2: vmehb_fd = open (VMEHB_DEV, O_RDWR);
3: lseek (vmehb_fd, address_vme, SEEK_SET);
4: cnt = read (vmehb_fd, buffer_pci, length);
5: close (vmehb_fd);

◆ VMEbus cycles for PIO reading (16 KB):

◆ Timing for PIO reading/writing:

The following graph displays the access times over the transfer lengths for both

PIO reading and writing with device /dev/vme24d32 . There exists a linear

relation with 150 µs setup time and a rate of 8.5 MB/s for reading, and 10 MB/s for

writing. Using device /dev/vme32d16 instead, only 1.6 MB/s could be achieved.

◆ Access to non-existing VME address:

In an earlier version of the vmehb driver, a read or write access to an unused

VMEbus address (no board in the crate responds) could not be recognized, since

the contents of the internal driver buffer was touched and a BERR occured on the

VMEbus. There is an improvement for version 2.2.6 of the vmehb driver, since a

mismatch between the length parameter for the read() or write() system call

and the return value indicates an access problem. Unfortunately, it does not work

VMEbus • SBS Bit 3 • reading A32D32 with PIO

Time AM Address Data Size Cycle MBytes/s

430 ns 0D 32 bit 32 bit LONG RD 8.9

0.00

0.50

1.00

1.50

2.00

2.50

0 2 4 6 8 10 12 14 16 18

m
il

li
se

co
nd

s

KB

SBS Bit3 Model 617 with vmehb-2.2.6 driver

"timing.BIT3.vme32d32.read"
"timing.BIT3.vme32d32.write"

22 Assessment of VME-PCI Interfaces with Linux drivers
for small lengths (approx. 100 bytes) since Linux takes some time to respond to

interrupts. Also watch out /var/log/messages for some error messages. Hence,

access to non-existing VME addresses can not be reliably detected, which makes a

debugging of an application program difficult. This applies to the other transfer

modes as well.

4.3.2 DMA Transfer

◆ Programming for DMA writing:

1: #define VMEHB_DEV "/dev/vmm32d32"
2: vmehb_fd = open (VMEHB_DEV, O_RDWR);
3: lseek (vmehb_fd, address_vme, SEEK_SET);
4: cnt = write (vmehb_fd, buffer_pci, length);
5: close (vmehb_fd);

◆ VMEbus cycles for DMA writing (16 KB):

◆ Programming for DMA reading:

1: #define VMEHB_DEV "/dev/vmm32d32"
2: vmehb_fd = open (VMEHB_DEV, O_RDWR);
3: lseek (vmehb_fd, address_vme, SEEK_SET);
4: cnt = read (vmehb_fd, buffer_pci, length);
5: close (vmehb_fd);

◆ VMEbus cycles for DMA reading (16 KB):

◆ Timing for DMA reading/writing:

The following graph displays the access times over the transfer lengths for both

DMA reading and writing with device /dev/vmm32d32 . There exists a linear

relation with 150 µs setup time and a rate of 22.5 MB/s for reading, and 16 MB/s

for writing. Using device /dev/vmm32d16 instead, only 2 MB/s could be

achieved.

VMEbus Timing • SBS Bit 3 • writing A32D32 with DMA

Time AM Address Data Size Cycle MBytes/s

130 ns 0B 32 bit 32 bit LONG WBLK
19.2

5.45 µs at *256 B 0B 32 bit 32 bit LONG WRI

VMEbus Timing • SBS Bit 3 • reading A32D32 with DMA

Time AM Address Data Size Cycle MBytes/s

110 ns 0B 32 bit 32 bit LONG RBLK
27.0

950 ns at *256 B 0B 32 bit 32 bit LONG RD

SBS Bit 3 Model 617 Adapter 23
◆ Timing for DMA reading/writing up 32 MB:

The following graph displays the access times over the transfer lengths up to 32 MB

for DMA reading and writing, where the vmehb driver was running on an SMP

kernel. In earlier versions of the vmehb driver, 2 MB was the limit of a DMA

transfer. However, version 2.2.6 of the vmehb driver can handle up to 2 GB by

reusing the DMA buffer. The size of the latter is set by macro MAX_DMA_SIZEin file

vmehb_conf.h , where the default is 0x8000 (32 KB). No problems occured

during this long-term test.

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

0 2 4 6 8 10 12 14 16 18

m
il

li
se

co
nd

s

KB

SBS Bit3 Model 617 with vmehb-2.2.6 driver

"timing.BIT3.vmm32d32.read"
"timing.BIT3.vmm32d32.write"

0.00

0.50

1.00

1.50

2.00

2.50

3.00

0 5 10 15 20 25 30 35

se
co

nd
s

MB

SBS Bit3 Model 617 with vmehb-2.2.6 driver

"timing.BIT3.vmm32d32.32MB.read"
"timing.BIT3.vmm32d32.32MB.write"

24 Assessment of VME-PCI Interfaces with Linux drivers
◆ Non-aligned access for DMA reading:

The following table shows the results when non-aligned accesses are made on the

VMEbus. A non-aligned start address always resulted in a -1 return value of the

read() and write() system calls, and nothing happened on the VMEbus (label

nothing). If the length is non-aligned, additional D32A32 accesses took place, but

data is missing in the reading buffer on the PC. If both the start address and the

length is aligned, no pre-reads could be observed and the data was complete. This

was also verified for a transfer with 300 bytes (0x12C), 400 bytes (0x190), or 500

(0x1F4) bytes.

4.3.3 Memory Mapping Transfer

◆ Programming for MM writing:

1: #define VMEHB_DEV "/dev/vmm32d32"
2: #define WINDOW_SIZE 0x200000
3: vmehb_fd = open (VMEHB_DEV, O_RDWR);
4: lseek (vmehb_fd, address_vme, SEEK_SET);
5: address_pci = mmap (0, WINDOW_SIZE, PROT_READ|PROT_WRITE,

MAP_SHARED, vmehb_fd, address_vme);
6: for (i=0; i<length; i++)

*(address_pci+i) = *(buffer_pci+i);
7: munmap (addr_pci, WINDOW_SIZE);
8: close (vmehb_fd);

◆ VMEbus cycles for MM writing (16 KB):

◆ Programming for MM reading:

1: #define VMEHB_DEV "/dev/vmm32d32"
2: #define WINDOW_SIZE 0x200000
3: vmehb_fd = open (VMEHB_DEV, O_RDWR);
4: lseek (vmehb_fd, address_vme, SEEK_SET);
5: address_pci = mmap (0, WINDOW_SIZE, PROT_READ|PROT_WRITE,

VMEbus • SBS Bit 3 • non-aligned reading A32D32 with DMA

Length
Start

0x100 0x101 0x102 0x103

0x03C00000
256 bytes read,

data complete

512 bytes read,

3 bytes missing

512 bytes read,

2 bytes missing

512 bytes read,

1 byte missing

0x03C00001 nothing nothing nothing nothing

0x03C00002 nothing nothing nothing nothing

0x03C00003 nothing nothing nothing nothing

VMEbus • SBS Bit 3 • writing A32D32 with MM

Time AM Address Data Size Cycle MBytes/s

2.25 µs 0D 32 bit 32 bit LONG WRI 1.77

SBS Bit 3 Model 617 Adapter 25
MAP_SHARED, vmehb_fd, address_vme);
6: for (i=0; i<length; i++)

*(buffer_pci+i) = *(address_pci+i);
7: munmap (addr_pci, WINDOW_SIZE);
8: close (vmehb_fd);

◆ VMEbus cycles for MM reading (16 KB):

◆ Timing for MM reading/writing:

The following graph displays the access times over the transfer lengths for both

MM reading and writing with device /dev/vme32d32 . There exists a linear

relation with no setup time and a rate of 1.5 MB/s for reading, and 1.8 MB/s for

writing. Note that the window size can be up to 32 MB in multiples of the page size

(4 KB), which is established be the mmap() system call. Use MAP_SHARED as flag

parameter.

4.4 Concurrent Access

The following table shows what happens if two concurrent processes running on

the PC try to access the same Bit 3 interface. Device /dev/vme32d32 was used for

PIO and MM transfers, and device /dev/vmm32d32 for DMA transfers. As long as

MM was not involved, all combinations of transfer modes were working properly

VMEbus • SBS Bit 3 • readingA32D32 with MM

Time AM Address Data Size Cycle MBytes/s

2.57 µs 0D 32 bit 32 bit LONG RD 1.51

0.00

2.00

4.00

6.00

8.00

10.00

12.00

0 2 4 6 8 10 12 14 16 18

m
il

li
se

co
nd

s

KB

SBS Bit3 Model 617 with vmehb-2.2.6 driver

"timing.BIT3.mmap.read"
"timing.BIT3.mmap.write"

26 Assessment of VME-PCI Interfaces with Linux drivers
(label ok), which means that both processes did run concurrently. But combinations

with MM stopped the PC and a reboot was necessary (label hang). Hence do not

use memory mapped accesses when other transfers are going on.

Opening two or more devices within the same program did work well for all

transfer mode combinations.

4.5 Multi-hardware Installation

The current release of the vmehb driver is not designed to handle multiple PCI

cards in a PC. Also no daisy-chaining is possible.

2 processes • SBS Bit 3 • concurrent access

access
PIO
read

PIO
write

DMA
read

DMA
write

MM
read

MM
write

PIO
read

ok ok ok ok hang hang

PIO
write

ok ok ok hang hang

DMA
read

ok ok hang hang

DMA
write

ok hang hang

MM
read

ok ok

MM
write

ok

Summary 27
5 Summary

The following table synopsizes the assessment of the three VME-PCI interfaces.

features
Wiener

PCIVME Link
National Instruments

VME-PCI8026 Kit
SBS Bit 3

Model 617 Adapter

 PIO read 1.1 MB/s 8.0 MB/s 8.5 MB/s

DMA read not implemented
11.5 MB/s

(peak 16.0 MB/s)
22.5 MB/s

VME64 read not implemented
13.6 MB/s

(peak 21.3 MB/s)
not implemented

 MM read not working 2.1 MB/s 1.5 MB/s

 PIO write 0.3 MB/s 8.3 MB/s 10.0 MB/s

DMA write not implemented not implemented 16.0 MB/s

 MM write not working 4.2 MB/s 1.8 MB/s

data length
16 KB block size,

tested up to 1 MB

occasional bus error,

tested up to 32 MB

32 KB internal buffer,

tested up to 32 MB

SMP capable no yes yes

concurrent access no all combinations
yes, except MM

with PIO or DMA

non-existing
VME address

program exists can be detected
can be detected, but

not for small lengths

non-aligned access pre-reads
byte/word reads, data

missing/corrupted

pre-reads, data

missing

PCI slot cannot share interrupt
conflict with Ethernet

network card
cannot share interrupt

VME system
controller

only controller,

set by jumpers

controller and slave,

set by detection

 controller and slave,

set by jumpers

cable
SCSI-2 cable,

max. 10 m

MXI-2 cable,

max. 20 m

custom cable,

max. 7.5 m

miscellaneous

• spurious

VMEbus resets

• tests executed

under root

• multi-hardware

installation

• utilities: resman,

vxitedit, victext

• many parameters

• daisy-chain of

VME-MXI-2

extenders

• utilities: vmetst

• driver unloading

problems

• multi-hardware

installation not

supported

28 Assessment of VME-PCI Interfaces with Linux drivers
References

[1] Richard J. O’Connor, “Interfacing VMEbus to PCIbus: It’s not as easy as you might

think”, VMEbus Systems Magazine, August 1996, World-Wide Web document:

http://www.vmebus-systems.com/pdf/Tundra.Aug96.pdf

[2] Hewlett-Packard Co., World-Wide Web page: http://www.support.kayak.hp.com

[3] CERN, IT Division, World-Wide Web page:

http://wwwinfo.cern.ch/pdp/ose/linux/linux_CERN.html

[4] W-IE-N-ER Plein&Baus GmbH, “PCI-VME PCI to VME Interface User’s Manual“,

June 1999, World-Wide Web document: http://www.wiener-d.com/Pcivme.pdf

[5] Hermann-Josef Mathes et. al., Forschungszentrum Karlsruhe (FZK), private

communications

[6] PLX Technology Inc., “PLXMon User’s Guide”, January 1997, World-Wide Web

document: http://www.plxtech.com/

[7] National Instruments Co., “NI-VXI Getting Started with Your VXI/VME-PCI8026

and the NI-VXI/NI-VISA Software for Linux“, December 1999, World-Wide Web

document: http://www.ni.com/pdf/manuals/322651a.pdf

[8] National Instruments Co., “NI-VXI Text Utilities Reference Manual”, October

1993, World-Wide Web document: http://www.ni.com/pdf/manuals/320321.pdf

[9] National Instruments Co., “NI-VXI Programmer Reference Manual“, July 1996,

World-Wide Web document: http://www.ni.com/pdf/manuals/321272a.pdf

[10] National Instruments Co., “NI-VXI User Manual“, July 1996, World-Wide Web

document: http://www.ni.com/pdf/manuals/321228a.pdf

[11] Geraldine Thomas, CERN - EP/ESS, “Selection of a PC for the NA45/CERES

experiment“, April 2000

[12] SBS Technologies Inc., “Model 617 Adapter Hardware Manual“, December 1998,

World-Wide Web document: http://www.bit3.com/cp_adapter_d.shtml

[13] Natalia Kruszynska, The National Institute for Nuclear Physics and High Energy

Physics (NIKEF), private communications

	Assessment of VME-PCI Interfaces with Linux drivers
	1 Introduction
	1.1 Test Setup
	1.2 Assessment Goals
	1. How to install and configure these interfaces? - PCI interface board: jumpers, IRQ lines - VME...
	2. How to program a test application? - C library functions, system calls, utilities - manuals, s...
	3. Which transfer modes are possible? - reading/writing - A16, A24, A32 addressing - D8, D16, D32...
	4. What is the performance of each transfer mode? - seen on the VMEbus (bus cycles) - seen from t...

	1.3 Timing Measurements
	1: $filename = "timing.dat";
	2: open(IN,"<$filename") || die "cannot open $filename";
	3: $filename = "timing.plot";
	4: open(OUT,">$filename") || die "cannot open $filename";
	5: $loop_inner = 100;
	6: $skip = 10;
	7: while($line = <IN>) { @col = split(/ /,$line); $bytes = shift @col; @times = sort { $a <=> $b}...
	8: }
	9: print OUT "0.0 0.0 \n";
	10: close(IN);
	11: close(OUT);
	1: set terminal postscript eps color "Times-Roman"
	2: set output "timing.ps"
	3: set format y "%.2f"
	4: set grid
	5: set title "VME-PCI interface ... using ... for ..."
	6: set xlabel "bytes"
	7: set ylabel "microseconds"
	8: plot [][] "timing.plot" with points
	9: exit

	1.4 Acronyms

	2 Wiener PCIVME Link
	2.1 Description
	2.2 Driver Installation
	1. Login as root
	2. Download the driver: http://www-ik3.fzk.de/~mathes/software/arwvme.1.46.tar.gz into /usr/local
	3. Unpack the archive: # cd /usr/local # tar vxfz arwvme.1.46.tar.gz # mv arwvme arwvme-1.46 # cd...
	4. Edit the Makefile (if necessary): modify KERNEL_HDRS = /usr/local/include/linux modify # DEFIN...
	5. Compile the kernel module: # make # make install Check: # ls -l /dev/arw*
	6. Load the kernel module: # mv arwvme.o arwvme-1.46 # /sbin/insmod arwvme-1.46 Check: # /sbin/ls...
	7. Installing the library: # cd /usr/local/arwvme-1.46 # xmkmf # make depend # make
	8. Simple tests: # cd /usr/local/arwvme-1.46 # test_mix # test_map
	1. Make a MS-DOS-bootable disk.
	2. Create a folder PLXMON and copy the files PLXMON.EXE, EEP50V.MON and EEP50VH.MON into this fol...
	3. Boot the PC in MS-DOS mode.
	4. Change to folder PLXMON and start PLXMON.EXE.
	5. Type in the following PLXMON commands: At start-up the program shows a list of found PCI devic...

	2.3 Data Transfer
	1: arwvme_fd = ArwvmeOpen(1);
	2: ArwvmeSetMode (arwvme_fd, ARWVME_A32|ARWVME_D32|ARWVME_DATA|ARWVME_NONPRIV);
	3: lseek (arwvme_fd, address_vme, SEEK_SET);
	4: ArwvmeWrite (arwvme_fd, buffer_pci, length);
	5: ArwvmeShutdown(arwvme_fd);
	VMEbus • Wiener • writing A32D32 with PIO
	1: arwvme_fd = ArwvmeOpen(1);
	2: ArwvmeSetMode (arwvme_fd, ARWVME_A32|ARWVME_D32|ARWVME_DATA|ARWVME_NONPRIV);
	3: lseek (arwvme_fd, address_vme, SEEK_SET);
	4: ArwvmeRead (arwvme_fd, buffer_pci, length);
	5: ArwvmeShutdown(arwvme_fd);

	VMEbus • Wiener • reading A32D32 with PIO

	3 National Instruments VME-PCI8026 Kit
	3.1 Description
	3.2 Driver Installation
	1. Login as root
	2. Download and unpack the driver: # cd /afs/cern.ch/sw/natinst/drivers/pci-mxi/linux-1.6 # mkdir...
	3. Compile the kernel module: # cd /usr/local/nivxi/src # make
	4. Install shared libraries: # echo ’/usr/local/nivxi/lib’ >> /etc/ld.so.conf # /sbin/ldconfig
	5. Load the kernel module: # cd /usr/local/nivxi/sys # mv vxi vxi-1.6 # ln -s vxi-1.6 vxi # ./loa...
	6. Loading the kernel module at boot time: Add the command /usr/local/nivxi/sys/load_vxi in file ...
	7. Configure the VME devices (e.g. memory): # cd /usr/local/nivxi/bin # resman # vxitedit 7 add v...
	8. Simple test with VXIbus Text Interactive Control (victext): # /usr/local/nivxi/bin/victext vxi...

	3.3 Data Transfer
	3.3.1 PIO Transfer
	1: #define SPACE_A32 0x0003
	2: #define SPACE_LOCAL 0x0000
	3: #define ENDIAN_BIG 0x0000
	4: #define UNIT 4
	5: mode = SPACE_A32|ENDIAN_BIG;
	6: ret = VXImove (SPACE_LOCAL|ENDIAN_BIG, buffer_pci, mode address_vme, length, UNIT);
	VMEbus • National Instruments • writing A32D32 with PIO
	1: #define SPACE_A32 0x0003
	1: #define SPACE_LOCAL 0x0000
	2: #define ENDIAN_BIG 0x0000
	3: #define UNIT 4
	4: mode = SPACE_A32|ENDIAN_BIG;
	5: ret = VXImove (mode, address_vme, SPACE_LOCAL|ENDIAN_BIG, buffer_pci, length, UNIT);

	VMEbus • National Instruments • reading A32D32 with PIO

	3.3.2 DMA Transfer
	1: #define SPACE_A32 0x0003
	2: #define SPACE_LOCAL 0x0000
	3: #define ENDIAN_BIG 0x0000
	4: #define ACCESS_BLOCK 0x0010
	5: #define UNIT 4
	6: mode = SPACE_A32|ENDIAN_BIG|ACCESS_BLOCK;
	7: ret = VXImove (mode, address_vme, SPACE_LOCAL|ENDIAN_BIG, buffer_pci, length, UNIT);
	VMEbus • National Instruments • reading A32D32 with DMA
	VMEbus • National Instruments • non-aligned reading A32D32 with DMA

	3.4 VME64 Transfer
	1: #define SPACE_A32 0x0003
	2: #define SPACE_LOCAL 0x0000
	3: #define ENDIAN_BIG 0x0000
	4: #define ACCESS_VME64 0x0018
	5: #define UNIT 4
	6: mode = SPACE_A32|ENDIAN_BIG|ACCESS_VME64;
	7: ret = VXImove (mode, address_vme, SPACE_LOCAL|ENDIAN_BIG, buffer_pci, length, UNIT);
	VMEbus • National Instruments • reading A32D64 with DMA
	3.4.1 Memory Mapping Transfer
	1: #define SPACE_A32 0x0003
	2: #define ACCESS_ONLY 0x0000
	3: #define ENDIAN_BIG 0x0000
	4: #define ACCESS_LONGWORD 4
	5: #define WINDOW_SIZE 0x200000
	6: MapVXIAddressSize (WINDOW_SIZE);
	7: address_pci = (UINT32*) MapVXIAddress (SPACE_A32|ACCESS_ONLY|ENDIAN_BIG, address_vme, 2000L, &...
	8: for (i=0; i<length; i++) VXIpoke (address_pci+i, ACCESS_LONGWORD, *(buffer_pci+i));
	9: UnMapVXIAddress (window);
	VMEbus• National Instruments • writing A32D32 with MM
	1: #define SPACE_A32 0x0003
	2: #define ACCESS_ONLY 0x0000
	3: #define ENDIAN_BIG 0x0000
	4: #define ACCESS_LONGWORD 4
	5: define WINDOW_SIZE 0x200000
	6: MapVXIAddressSize (WINDOW_SIZE);
	7: address_pci = (UINT32*) MapVXIAddress (SPACE_A32|ACCESS_ONLY|ENDIAN_BIG, address_vme, 2000L, &...
	8: for (i=0; i<length; i++) VXIpeek (address_pci+i, ACCESS_LONGWORD, buffer_pci+i);
	9: UnMapVXIAddress (window);

	VMEbus • National Instruments • reading A32D32 with MM

	3.5 Concurrent Access
	2 processes • National Instruments • concurrent access

	3.6 Multi-hardware Installation

	4 SBS Bit 3 Model 617 Adapter
	4.1 Description
	4.2 Driver Installation
	1. Login as root
	2. Download and unpack the driver: # mkdir /usr/local/vmehb-2.2.6 # cd /usr/local/vmehb-2.2.6 dow...
	3. Set up devices and man-pages: # make devices Check: # ls -l /dev/vme* # make man In case of pr...
	4. Compile the kernel module: # make
	5. Load the kernel module: # insmod vmehb-2.2.6-2.2.12-20.o Check: # /sbin/lsmod Check: # tail -5...
	6. Loading the kernel module at boot time: place the command insmod vmehb-2.2.6-2.2.12-20.o in fi...
	7. Simple tests: # cd /usr/local/vmehb-2.2.6 # vmetst

	4.3 Data Transfer
	4.3.1 PIO Transfer
	1: #define VMEHB_DEV "/dev/vme32d32"
	2: vmehb_fd = open (VMEHB_DEV, O_RDWR);
	3: lseek (vmehb_fd, address_vme, SEEK_SET);
	4: cnt = write (vmehb_fd, buffer_pci, length);
	5: close (vmehb_fd);
	VMEbus • SBS Bit 3 • writing A32D32 with PIO
	1: #define VMEHB_DEV "/dev/vme32d32"
	2: vmehb_fd = open (VMEHB_DEV, O_RDWR);
	3: lseek (vmehb_fd, address_vme, SEEK_SET);
	4: cnt = read (vmehb_fd, buffer_pci, length);
	5: close (vmehb_fd);

	VMEbus • SBS Bit 3 • reading A32D32 with PIO

	4.3.2 DMA Transfer
	1: #define VMEHB_DEV "/dev/vmm32d32"
	2: vmehb_fd = open (VMEHB_DEV, O_RDWR);
	3: lseek (vmehb_fd, address_vme, SEEK_SET);
	4: cnt = write (vmehb_fd, buffer_pci, length);
	5: close (vmehb_fd);
	VMEbus Timing • SBS Bit 3 • writing A32D32 with DMA
	1: #define VMEHB_DEV "/dev/vmm32d32"
	2: vmehb_fd = open (VMEHB_DEV, O_RDWR);
	3: lseek (vmehb_fd, address_vme, SEEK_SET);
	4: cnt = read (vmehb_fd, buffer_pci, length);
	5: close (vmehb_fd);

	VMEbus Timing • SBS Bit 3 • reading A32D32 with DMA
	VMEbus • SBS Bit 3 • non-aligned reading A32D32 with DMA

	4.3.3 Memory Mapping Transfer
	1: #define VMEHB_DEV "/dev/vmm32d32"
	2: #define WINDOW_SIZE 0x200000
	3: vmehb_fd = open (VMEHB_DEV, O_RDWR);
	4: lseek (vmehb_fd, address_vme, SEEK_SET);
	5: address_pci = mmap (0, WINDOW_SIZE, PROT_READ|PROT_WRITE, MAP_SHARED, vmehb_fd, address_vme);
	6: for (i=0; i<length; i++) *(address_pci+i) = *(buffer_pci+i);
	7: munmap (addr_pci, WINDOW_SIZE);
	8: close (vmehb_fd);
	VMEbus • SBS Bit 3 • writing A32D32 with MM
	1: #define VMEHB_DEV "/dev/vmm32d32"
	2: #define WINDOW_SIZE 0x200000
	3: vmehb_fd = open (VMEHB_DEV, O_RDWR);
	4: lseek (vmehb_fd, address_vme, SEEK_SET);
	5: address_pci = mmap (0, WINDOW_SIZE, PROT_READ|PROT_WRITE, MAP_SHARED, vmehb_fd, address_vme);
	6: for (i=0; i<length; i++) *(buffer_pci+i) = *(address_pci+i);
	7: munmap (addr_pci, WINDOW_SIZE);
	8: close (vmehb_fd);

	VMEbus • SBS Bit 3 • readingA32D32 with MM

	4.4 Concurrent Access
	2 processes • SBS Bit 3 • concurrent access

	4.5 Multi-hardware Installation

	5 Summary
	References
	[1] Richard J. O’Connor, “Interfacing VMEbus to PCIbus: It’s not as easy as you might think”, VME...
	[2] Hewlett-Packard Co., World-Wide Web page: http://www.support.kayak.hp.com
	[3] CERN, IT Division, World-Wide Web page: http://wwwinfo.cern.ch/pdp/ose/linux/linux_CERN.html
	[4] W-IE-N-ER Plein&Baus GmbH, “PCI-VME PCI to VME Interface User’s Manual“, June 1999, World-Wid...
	[5] Hermann-Josef Mathes et. al., Forschungszentrum Karlsruhe (FZK), private communications
	[6] PLX Technology Inc., “PLXMon User’s Guide”, January 1997, World-Wide Web document: http://www...
	[7] National Instruments Co., “NI-VXI Getting Started with Your VXI/VME-PCI8026 and the NI-VXI/NI...
	[8] National Instruments Co., “NI-VXI Text Utilities Reference Manual”, October 1993, World-Wide ...
	[9] National Instruments Co., “NI-VXI Programmer Reference Manual“, July 1996, World-Wide Web doc...
	[10] National Instruments Co., “NI-VXI User Manual“, July 1996, World-Wide Web document: http://w...
	[11] Geraldine Thomas, CERN - EP/ESS, “Selection of a PC for the NA45/CERES experiment“, April 2000
	[12] SBS Technologies Inc., “Model 617 Adapter Hardware Manual“, December 1998, World-Wide Web do...
	[13] Natalia Kruszynska, The National Institute for Nuclear Physics and High Energy Physics (NIKE...

