MAPS for an ILC Si-W ECAL

Paul Dauncey Imperial College London

MAPS concept

- Monolithic Active Pixel Sensors
 - Integrates readout electronics onto same wafer as sensitive detecting element
 - Uses standard CMOS technology, not high resistivity silicon as needed for Si-W ECAL with diode pads
- Charge detection through ionisation in the epitaxial layer
 - Can be very thin; ~5-10 μ m and close to the surface; ~few μ m
 - Charge diffuses within epitaxial layer to metal contact
 - Read out via electronics constructed on surface above this layer
- Silicon wafers mechanically could be very similar to diode pads
 - Reuse almost all of diode pad mechanical structure ideas
 - "Simplest" approach would be to replace diode pad wafers with MAPS and integrate preamplifier (i.e. VFE ASIC circuit) into MAPS
- But this does not take full advantage of the new possibilities...

MAPS concept

- Readout concept is to go to a "digital" ECAL
 - Cover silicon in small pixels rather than diode pads
 - Use binary readout to keep data volume down
- "Small" means probability of more than one track per pixel is low
 - Density of EM shower @ 500 GeV ~100 MIPs/mm² in the core
 - Pixels have to be at most $100 \times 100 \ \mu m^2$ and probably more like $50 \times 50 \ \mu m^2$
 - Results in 40k pixels instead of each diode pad
 - Gives ~10⁷ pixels/wafer and ~10¹² pixels in total for the ECAL!
 - Only vaguely feasible because of highly integrated electronics

Comparison of MAPS with diode pads

- The PCB for both looks similar
 - But no VFE ASICs for MAPS case
- Wafer thickness can be reduced
 - Only epitaxial layer detects charge
 - Don't need full silicon thickness to get sufficient signal

- This changes the thickness of the total slab structure by ~2mm
 - Still smaller even if MAPS mounted double-sided on PCB

Two options

- Option 1: sum number of bits set over "pseudo-pad"
 - Area could be similar to original diode pad
 - Will give similar granularity
 - Difference is measurement is of number of particles, not deposited energy
 - Pixels act as "PDC" Particle to Digital Converter!
 - Data rate per PCB ~3 Mbytes per bunch train
 - Interesting to know if sum area could be configurable or even event-by-event adaptive, depending on density of hits
- Option 2: read beam crossing timestamps indicating when bits set for every pixel
 - More ambitious; total possible information
 - Clearly more flexible; option 1 is calculable from the data read out
 - Gives extremely fine granularity for pattern recognition
 - Downside is data rate; factor of ~3 higher
 - This is probably the favoured option at present

Advantages compared with diode pads

- Energy measurement may be better
 - Pixels will measure the number of particles
 - Diodes measure the energy deposited in the silicon; depends on β and angle
 - David Ward's studies show ~10-20% improvement in resolution at lowish energies
- Granularity may be better (for option 2)
 - Two orders of magnitude improvement
 - Unclear how much is gained in actual PFLOW pattern recognition
- Effective Moliere radius may be smaller
 - No VFE ASIC means wafer PCBs are thinner by ~1mm per layer
 - Reduces inter-tungsten gap; again how significant for physics?
- Temperature stability may be better
 - Heat produced over whole wafer, not localised on VFE ASIC
 - Can use tungsten sheet as heat reservoir; bigger area for thermal coupling

Advantages (cont)

- Assembly may be easier
 - Single-sided PCB and no VFE ASIC
 - Bump-bonding (standard commercial process), not gluing for wafers
 - Reduces assembly steps; there will be ~5k PCBs in the ECAL!
- "Single event" upset may be reduced
 - Ionising particles can cause circuits to give corrupted results
 - Electronics will be hit by EM showers in both types of ECAL
 - Showers of order the Moliere radius ~9mm ~size of VFE ASIC so can affect whole chip
 - MAPS has much lower density of critical components
- COST!!!
 - Currently standard CMOS more than a factor two cheaper than high resistivity silicon

What we will bid for

- Three year programme to validate (or dismiss!) concept
 - Produce some prototype MAPS and test whether they work, in terms of signal size, noise rate, stability of threshold/pedestal, etc.
 - Ideally, put in a beam test for further checks, including single event upsets
 - Plan for two iterations of wafer manufacturing
 - These would be produced around 18 and 30 months into project
- First iteration will have several different designs
 - Around nine, each on a $\sim 1 \times 1$ cm² (or smaller) area
 - Test various choices for comparator, readout, reset, etc.
- Second iteration will be a single design
 - Use modification of the best design from first iteration
 - Make 2×2 cm² area devices; standard commercial size
 - Would get standard run of six wafers, each holding ~ 50 sensors
 - Even allowing for bad yield, would be able to make several layers of e.g. 10×10 cm² area for a beam test

Simulation work is needed!

- Many of the arguments need firming up before proposal goes in
 - Need quantitative answers to many questions
 - First thing is to write a realistic simulation of a MAPS including the thin sensitive layer
- What pixel size is really needed?
 - Is 50×50 μ m² sufficient?
 - Would we see saturation effects from multiple tracks per pixel?
- What is the requirement on noise in the pixels?
 - How often can we tolerate a fake hit in a pixel?
 - Signal/noise of >10 could give 10⁻⁶ probability of fake hit, if Gaussian
 - Is one fake in every 10⁶ samples good enough for physics?
 - This impacts both resolution on the shower energy and pattern recognition; which is the more critical?

Simulation work (cont)

- What is the actual improvement in using pixels not diode pads?
 - Preliminary studies on energy resolution started
 - Does the answer depend on the option chosen?
 - What about pattern recognition?
- What is a tolerable inefficiency per pixel?
 - The surface readout electronics may absorb some charge
 - May be a localised inefficiency; is this acceptable?
 - Does it affect resolution or pattern recognition more?
- What rate of crosstalk is acceptable?
 - Diffusion means tracks near pixel edges will share charge with neighbour
 - Better to have low threshold and hence two hits, or high threshold and hence zero hits?
 - What rate of sharing is tolerable?

Simulation work (cont)

- What is the rate from beam interactions in the pixels?
 - If too high, then the data volume would be prohibitive
 - TESLA TDR gives a rate of around each diode pad being above threshold once per train
 - How does this translate into pixels per train; 10 per diode? 100? 1000?
- What would be the difference in temperature stability?
 - Need thermal modeling rather than GEANT
 - Could make a difference between requiring cooling pipes or not?
- What improvement is achieved with a 1mm gap reduction?
 - Is this significant for shower separation?

Two months to answer as many of these questions as we can

• Please contact me if you want to help out here!