Monolithic Active Pixel Sensors

Paul Dauncey

Imperial College London

Workpackage 3: MAPS

- Who?
 - Birmingham, Imperial, RAL ID, RAL PPD
- Why?
 - Alternative to standard silicon diode pad detectors in ECAL
 - Potential to be cheaper and/or better
- What?
 - Attempt to prove or disprove "MAPS-for-ECAL" concept over next 3 years
- Two-pronged approach: hardware...
 - Two rounds of sensor fabrication and testing, including cosmics and sources
 - Electron beam test, to check response in showers and single event upsets
- ...and simulation
 - Model detailed sensor response to EM showers and validate against hardware
 - Simulate effect on full detector performance in terms of PFLOW

MAPS history

- Developed over the last decade
 - Integrates sensitive silicon detector and readout electronics into one device
 - "Camera on a chip"; all-in-one device for light detection
 - Standard CMOS technology

- HEP and space applications more recent
 - Detector for higher energy X/gammarays or charged particles
 - Basic principle; collection of liberated charge in thin epitaxial layer just below surface readout electronics

"MAPS for PP&SS" collaboration

- Birmingham, Glasgow, Leicester (→Brunel), Liverpool, RAL
- Two year programme; June 2003 May 2005
- Simulated and real devices studied
- A lot of experience at RAL in areas directly relevant to us

Measurements of S/N with $^{106}\mathrm{Ru}$

Simulation of charge collection with 4-diode structure before/after irradiation

Basic concept for ECAL

- How small is small?
 - EM shower core density at 500GeV is ~100/mm²
 - Pixels must be < 100×100μm²; working number is 50×50μm²
 - Gives ~10¹² pixels for ECAL!

- Replace 1×1 cm² diode pads with much smaller pixels
 - Make pixels small enough that at most one particle goes through each
 - Then only need threshold to say if pixel hit or not; "binary" readout, i.e. DECAL

MAPS - Paul Dauncey

Pixel analogue optimisation

- Studies are needed on
 - Charge sharing (crosstalk), MIP S/N, MIP multiple hits/pixel
 - Dependent on pixel area, epitaxial thickness, threshold, diode geometry, etc

- Noise rate target $< 10^{-6}$ (~5 σ); DAQ could handle (at least) ~10^{-5}
- Large parameter space; need to find best combination
 - Sensor-level simulation to interpolate between sensor measurements
 - Physics-level simulation needed to guide choices

Physics MC studies in progress

• By eye, pixels look very good compared with diodes

MC studies (cont)

- Compare electron resolution up to 500 GeV
 - Resolutions very similar for diode and MAPS
 - Mainly dominated by fundamental EM shower fluctuations?

- Need to build up to comparison of ECALs using hadronic jets with realistic PFLOW algorithm
 - Need very flexible PFLOW code to handle both ECALs
 - Much work to be done before this study can be completed

Readout concept

- In reality, will not have single event at a time
 - ILC will have multiple beam crossings per train
- Buffer results within bunch train, readout between trains
 - Must do threshold discrimination for each beam crossing in train
 - Store results in on-pixel memory until end of train and then flush out
- Could be up to 5000 beam crossings per train
 - Not feasible to build 5kbits of memory into a $50 \times 50 \mu m^2$ pixel
 - Assume rate is low and only store beam crossing numbers when hit
 - Memory is then 2 bytes × maximum number of crossings allowed
- Must know hit rate to determine maximum memory needed
 - Presumably dominated by one or more of: beam-induced background, Bhabhas, mini-jets, pixel noise
 - Need good estimates of rates of each of these; overlap with WP5

MI³ Collaboration

- Wide ranging (not just PPARC), Basic Technology development
- RAL ID a major contributor
 - Design centre for CMOS sensors and leading group in DAQ

- Current design (by J.Crooks, also on CALICE)
 - Many similar features to ILC ECAL requirements...
 - ...but several differences also
 - Sensors fabricated and under test over next few months
 - Valuable experience before starting CALICE design

ECAL as a system

- Replace diode pad wafers and VFE ASICs with MAPS wafers
 - Mechanically very similar; overall design of structure identical
 - DAQ very similar; FE talks to MAPS not VFE ASICs
 - Both purely digital I/O, data rates within order of magnitude

- Aim for MAPS to be a "swap-in" option without impacting too much on most other ECAL design work
- Requires sensors to be glued/solder-pasted to PCB directly
 - No wirebonds; connections must be routed on sensor to pads above pixels
 - New technique needed which is part of our study

Potential advantages

- Slab thinner due to missing VFE ASICs
 - Improved effective Moliere radius (shower spread)
 - Reduced size (=cost) of detector magnet and outer subdetectors

- Thermal coupling to tungsten easier
 - Most heat generated in VFE ASIC or MAPS comparators
 - Surface area to slab tungsten sheet ~1cm² for VFE ASIC, ~100cm² for final MAPS
- **COST!** Standard CMOS should be cheaper than high resistivity silicon
 - No crystal ball for 2012 but roughly a factor of two different now
 - TESLA ECAL wafer cost was 90M euros; 70% of ECAL total of 133M euros
 - That assumed 3euros/cm² for 3000m² of processed silicon wafers

MAPS - Paul Dauncey

Other requirements

- Also need to consider power, uniformity and stability
 - Power must be similar (or better) that VFE ASICs to be considered
 - Main load from comparator; ~2.5 μ W/pixel when powered on
 - Investigate switching comparator; may only be needed for ~10ns
 - Would give averaged power of ~1nW/pixel, or 0.2W/slab
 - There will be other components in addition
 - VFE ASIC aiming for 100μ W/channel, or 0.4W/slab
 - Unfeasible for threshold to be set per pixel
 - Prefer single DAC to set a comparator level for whole sensor
 - Requires sensor to be uniform enough in response of each pixel
 - Possible fallback; divide sensor into e.g. four regions
 - Sensor will also be temperature cycled, like VFE ASICs
 - Efficiency and noise rate must be reasonably insensitive to temperature fluctuations
 - More difficult to correct binary readout downstream

Planned programme

- Two rounds of sensor fabrication
 - First with several pixel designs, try out various ideas
 - Second with uniform pixels, iterating on best design from first round
- Testing needs to be thorough
 - Device-level simulation to guide the design and understand the results
 - "Sensor" bench tests to study electrical aspects of design
 - Sensor-level simulation to check understanding of performance
 - "System" bench tests to study noise vs. threshold, response to sources and cosmics, temperature stability, uniformity, magnetic field effects, etc.
 - Physics-level simulation to determine effects on ECAL performance
- Verification in a beam test
 - Build at least one PCB of MAPS to be inserted into pre-prototype ECAL
 - Replace existing diode pad layer with MAPS layer
 - Direct comparison of performance of diode pads and MAPS

First draft of schedule

		FY	5/6			FY	6/7			FY	7/8			FY	8/9	
	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4
Feasibility study	=	=	=													
Design 1				=	=	=	=									
Fabrication 1								=	=							
Basic tests 1									=							
Detailed tests 1									=	=	=	=				
Design 2										=	=					
Fabrication 2												=	=			
Basic tests 2													=			
Detailed tests 2													=	=	=	=
Beam test PCB											=	=	=	=		
Beam test															=	=

Schedule implications

- Design starting 6 months later than originally planned
 - Limit on RAL ID staff effort in FY05/06
- First fabrication and testing starting 6-9 months later
 - Limit on equipment funds in FY06/07
- Second fabrication and testing starting 9 months later
 - Knock-on effects from above
- Beam test starting 9 months later also
 - Would be ready from Oct 2008
 - Misses scheduled CALICE beam tests at CERN and FNAL
 - Have to arrange for specific ECAL+MAPS beam test (at DESY?)

Conclusions

- Basic idea of MAPS seems feasible so far
 - No showstoppers identified (yet!)
- Will continue conceptual study until end of year
 - Had first meeting last week
- Design and fabrication of real sensors will follow
 - RAL/ID effort funded from Jan 2006
- Simulation studies are needed in parallel
 - RAL/PPD will do sensor simulation
 - Good start at Birmingham already on physics studies
 - New RAs at Birmingham and Imperial should contribute soon