

Estimation of SEUs in the FPGAs

C. Targett-Adams V. Bartsch, M. Wing M. Warren, M. Postranecky

FPGAs

ERSION 8 MODULES

magnet

ECAL, 30 slabs stacked on top each other, in z direction 25 slabs next to each other extends to |eta|=1.1

HCAL

very frontend electronics (VFE) based on ASICs frontend electronics (FE) based on FPGAs, 1 FPGA/slab

SEU dependence

look for particles which deposit much charge in small area

SEU dependence

look for particle:
charge in small :Weibull fit
described in E. Normand, Extensions of the Burst
Generation Rate Method for Wider Application to
p/n induced SEEs

• ttbar:

- 50-70 events/hour depending on CMS energy

- WW
 - 800-900 events/hour
- QCD events
 - 0.02-0.1 ev/BX => 7-9Mio events/hour
 - Photon/photon 0.1-0.02 per bunchx

from the TESLA TDR

simulation

WW: 230/5000 events QCD: 239/50000 events

SEU - Weibull Fit

Fig. 4. Proton-induced SEU cross section for the switches and circuit in the Xilinx XC4036XLA FPGA. The curve is a fit to the data using a Weibull cumulative density function.

IEEE Transactions on Nuclear Science Vol. 50, No.2, 2003 Gingrich

SEU o

٠	p,n,pi hits/hour above 20MeV	probability of SEU/h
ttbar	5	
WW	2	
QCD	70	0.0010

 \Rightarrow one SEU/device every 40 days

Other FPGAs

FPGA	year	threshold	SEU o
		[MeV]	[cm ² /device]
Virtex II X-2V100 & Virtex II X-2V6000	2004	5MeV	8*10-9
Altera Stratix	2004	10MeV	10-7
Xilinx XC4036XLA	2003	20MeV	3*10-9
Virtex XQVR300	2003	10MeV	2*10-8
9804RP	1998	20MeV	10-8

all data from literature, references not given in talk

It has been assumed that each device consists of 10⁶ bits in order to make the numbers comparable

Other FPGAs

Virtex II X-2V100	0.005 SEUs/h
Virtex II X-2V6000	
Altera Stratix	0.062 SEUs/h
Xilinx XC4036XLA	0.001 SEUs/h
Virtex XQVR300	0.012 SEUs/h
9804RP	0.005 SEUs/h

other radiation effects

- neutron spallation:
 - non-ionizing effects like nuclear spallation reaction, which make neutrons stop completely => leads to destruction of electronics
 - depending on 1MeV neutron equivalent fluence, no comparison to measurements up to now
- deep level traps:
 - cause higher currents
 - depending on radiation dose (energy deposition in the electronics), not yet done

NIEL hypothesis

annual 1MeV neutron equivalent fluence assuming 10⁷s: 10⁴ /cm² (factor 10¹⁰ smaller than inner <u>detector@LHC</u>)

Radiation dosis

- strategy1: take worst case scenario
 - look at innermost layer which has most hits
 - take the whole energy loss => also non electromagnetic energy loss
- => 0.003 rad/year
- strategy2: estimate from the flux calculated for the SEUs
 - take average energy from spectrum for each particle
- => 0.003 rad/year

Radiation dosis

• strategy1: take worst case scenario Energy deposited: (1952MeV / 6986 events) * (9Mio events/hour / 3600sec) * 10⁷ sec/year $= 7*10^{9}$ MeV == 0.001J with 1eV=1.6*10⁻¹⁹J Volume/mass: $V = (24 Mio cells/40 layers) * 1 cm² * 300 \mu m$ =0.018m³ $m = 0.018m^3 * 2330 \text{ kg/m}^3 = 42 \text{ kg}$ Radiation dosis: $0.001J/42kg = 2.8*10^{-5} J/kg (Gy)$ $== 2.8 \times 10^{-3}$ rad

	Radiation dosis before error occured
Xilinx Virtex XQVR300TID	100kRad
XC4036XL	60kRad
XC4036XLA	42kRad

=> we should be safe using FPGAs

radiation monitors

(inspired by RadMon group at LHC)

SEUs:	SRAM with high SEU probability
Dose:	Radiation Sensitive MOSFET or
	Gate Controlled Diodes
Fluence:	Si diodes or Gate Controlled Diodes

occupancy - for the barrel

Hits per bunch train (assuming Gauss distribution of events)

hits per bx

 \Rightarrow Occupancy per bunch train: 12000 hits/24Mio cells = 5*10⁻⁴