LCFI Status Report

Konstantin Stefanov on behalf of LCFI

CALICE UK Meeting, 27 March 2007

- v Introduction
- v LCFI Vertex Package
- v Vertex Detector R&D
 - 1 Column-Parallel CCDs
 - 1 In-situ Storage Image Sensors
 - **1** Mechanical support studies
- ${\rm v}~$ Areas of Common Interest for LCFI and CALICE
- v Conclusion

Vertex Package – Overview (based on Sonja's presentations)

Goal:

1 Evaluation of the performance of the vertex detector and optimisation of its parameters

- **1** Development of tools
- **1 Studies of benchmark physics processes**

1 Vertex Package interfaces to the MarlinReco framework, adding important and so far missing contribution

- **1** Framework consists of software modules (processors)
- **1** Enabled and configured via XML file

1 Path towards full MC simulation and reconstruction (MOKKA + MarlinReco)

1 Developed by Ben Jeffery and Erik Devetak (Oxford), Mark Grimes (Bristol), under the leadership of Sonja Hillert (Oxford)

Status:

- 1 Fully functional
- 1 ≈20,000 lines of C++ code

1 Currently finalising issues with integration with the MARLIN framework and verifying performance

- **1** Release is expected any time now
- **1** Eagerly awaited worldwide
- **1** After the release:

v Will move to using full pattern recognition in MarlinReco, including all silicon detectors and the TPC (currently uses track cheaters)

 ${\rm v}\,$ Use more realistic Vertex detector geometry (ladders) instead of cylinders

1 Tutorials for new users to be held starting in May

Input: LCIO events (SGV has been extended to write LCIO)

Output: Vertex information, flavour tag inputs, NN flavour tag output and vertex charge, output as LCIO file, using dedicated Vertex class

Code provides 9 Marlin processors:

- 1. Track selection cuts for ZVTOP, flavour tag and vertex charge
- 2. IP-fit processor
- 3. ZVRES "classical" branch of the ZVTOP vertex finder, written for and extensively used at SLD
- 4. ZVKIN "ghost track" algorithm based on kinematic dependencies on heavy flavour decays
- 5. Jet flavour MC truth information
- 6. Calculation of NN input variables and vertex charge from tracks and ZVTOP output
- 7. Training neural nets for flavour tag
- 8. Getting NN outputs for trained nets
- 9. PlotProcessor to plot flavour tag purity vs. efficiency

Vertex Package – Process Flow

1 Extensive verification over many months, a lot of hard work

 $_{\rm V}~1^{st}$ stage: comparisons between SGV and MARLIN using identical input events (SGV and the old FORTRAN ZVTOP very well known)

 $\rm v~2^{nd}$ stage:

 $_{\rm V}\,$ Same events from the 1st stage (PYTHIA) passed through full MC simulation MOKKA

 ${\rm v}\,$ Collaboration with DESY and MPI Munich for production of the input data sample

v Comparisons of MARLIN (MOKKA input) with MARLIN (SGV input) and former BRAHMS results from TESLA TDR

v First indications: MARLIN (C++) slightly outperforms SGV (FORTRAN)

1 Debugging using the tool Valgrind <u>http://valgrind.org</u> – helps find memory leaks, improves performance by using profilers

1 Documentation using *Doxygen* <u>http://www.doxygen.org</u> – provides automatic documentation from commented C++ code

Vertex Detector R&D

What is required for the vertex detector at ILC:

- 1 Excellent point resolution (3.5 μ m), small pixel size = 20 μ m, close to IP
- 1 Low material budget ($\leq 0.1\% X_0$ per layer), low power dissipation
- **1** Fast (low occupancy) readout challenging, two main approaches
 - 1 Column parallel readout during the 1 ms beam at 50 MHz (L1) or 25MHz (L2-L5)
 - 1 In-situ signal storage, readout in the 200 ms long gap
- **1** Tolerates Electro-Magnetic Interference (EMI)

What LCFI has done so far:

- **1 Made 2 generations of Column Parallel CCDs: CPC1 and CPC2**
- **1** In-situ Storage Image Sensor proof of principle device ISIS1 designed and tested
- **1 CMOS readout chips for CPC1/2: 2 generations, bump bonded to the CCDs**
- **1** Driver chip for CPC2 designed and manufactured
- **1** Built lots of electronics to support the detectors
- **1** Extensive tests of stand-alone devices and hybrid bump-bonded assemblies

Second Generation CPCCD : CPC2

- CPC2 wafer (100 $\Omega.cm/25~\mu m$ epi and 1.5k $\Omega.cm/50~\mu m$ epi)
- Low speed (single level metallisation) and high speed versions

High speed (busline-free) devices with 2level metal clock distribution:

v The whole image area serves as a distributed busline

- $\rm v~$ Designed to reach 50 MHz operation
- ${\rm v}~$ Important milestone for LCFI

Busline-free CPC2

CPC2-10 clocked and working at 45 MHz!

CCD output (2-stage source follower), $\approx 2 V_{pk-pk}$ clocks

- First tests showed clear X-ray hits at up to 45 MHz despite the huge clock feedthrough
- Transformer drive is challenging due to numerous parasitics
- Major result for LCFI
- But that is not all...

Busline-Free CPC2

- Low clock amplitude due to very low inter-gate implant barrier
- Resonance effect excluded
- Further tests will continue using CPD1 CMOS driver chip

- \bullet Hard to believe, but... clock amplitude is only 0.4 $V_{\text{pk-pk}}$
- At lower amplitudes charge transfer deteriorates
- Significant noise induced from the clock signals

CPC2/CPR2 Hybrid Assembly Tests

- Two CPC2 wafers worth of bumpbonded assemblies received
- Tests have started

• First response to X-rays observed, but not all has gone smoothly

New Ideas: CCDs for Capacitance Reduction

• High CCD capacitance is a challenge to drive because of the currents involved

• Can we reduce the capacitance? Can we reduce the clock amplitude as well?

 \bullet Inter-gate capacitance C_{ig} is dominant, depends mostly on the size of the gaps and the gate area

• Open phase CCD, "Pedestal Gate CCD", "Shaped Channel CCD" – new ideas, could reduce C_{ig} by ~4!

• Have already designed numerous small CCDs to test several ideas on low clock and low capacitance, together with e2V Technologies

Readout Chips – CPR1 and CPR2

Wire/Bump bond pads

Steve Thomas/Peter Murray, RAL

- 1 0.25 μm CMOS process (IBM)
- **1** Manufactured and delivered February 2005

CPR2 Test Results

 $\ensuremath{\mathbbmu}$ Parallel cluster finder with 2×2 kernel

1 Global threshold

Upon exceeding the threshold,
4×9 pixels around the cluster are flagged for readout

• Tests on the cluster finder: works!

- Several minor problems, but chip is usable
- Design occupancy is 1%
- Cluster separation studies:
 - v Errors as the distance between the clusters decreases reveal dead time
- Extensive range of improvements to be implemented in the next version (CPR2A)
- CPR2A design well underway

Clock Drive for CPC2

Johan Fopma/Brian Hawes, Oxford U

Chip Driver CPD1:

- Designed to drive the outer layer CCDs (127 nF/phase) at 25 MHz and the L1 CCD (40 nF/phase) at 50 MHz
- One chip drives 2 phases, up to 3.3 V clock swing
- 0.35 μ m CMOS process, chip size 3 \times 8 mm²
- CPC2 requires 21 Amps/phase!
- First tests are very promising

Transformer driver:

 \perp Requirements: 2 V_{pk-pk} at 50 MHz over 40 nF (half CPC2-40);

1 Planar air core transformers on 10-layer PCB, 1 cm square

1 Parasitic inductance of bond wires is a major effect – fully simulated

In-situ Storage Image Sensor (ISIS)

Operating principles of the ISIS:

- 1. Charge collected under a photogate;
- 2. Charge is transferred to 20-pixel storage CCD in situ, 20 times during the 1 ms-long train;
- 3. Conversion to voltage and readout in the 200 ms-long quiet period after the train (insensitive to beam-related RF pickup);
- 4. 1 MHz column-parallel readout is sufficient;

In-situ Storage Image Sensor (ISIS)

1 The ISIS offers significant advantages:

v Easy to drive because of the low clock frequency: 20 kHz during capture, 1 MHz during readout

 $v \sim$ 100 times more radiation hard than CCDs (less charge transfers)

v Very robust to beam-induced RF pickup

1 ISIS combines CCDs, active pixel transistors and edge electronics in one device: specialised process

1 Development and design of ISIS is more ambitious goal than CPCCD

1 "Proof of principle" device (ISIS1) designed and manufactured by e2V Technologies

Tests of ISIS1

Tests with 55Fe source

1 The top row and 2 side columns are not protected and collect diffusing charge

- **1** The bottom row is protected by the output circuitry
- 1 ISIS1 without *p*-well tested first and works OK

1 ISIS1 with *p*-well has very large transistor thresholds, permanently off – another set being manufactured now

Mechanical Support Studies

1 Goal is 0.1% X_0 per ladder or better, while allowing low temperature operation (~170 K)

- 1 Active detector thickness is only 20 µm
- 1 Unsupported silicon
 - v Stretched thin sensor (50 μ m), prone to lateral deformation
 - v Fragile, practically abandoned
- Silicon on thin substrates
 - 1 Sensor glued to semi-rigid substrate held under tension
 - 1 Thermal mismatch is an issue – causes the silicon to deform
 - 1 Many studies done for Be substrate
- **1** Silicon on rigid substrates
 - 1 Shape maintained by the substrate
 - 1 Materials with good thermal properties available
 - 1 Foams offer low density and mass while maintaining strength

Stephanie Yang, Oxford U

Mechanical Support Studies

1 RVC (Reticulated Vitreous Carbon) and silicon carbide are excellent thermal match to silicon

1 Silicon-RVC foam sandwich (~ 3% density)

 $1\,$ Foam (1.5mm thick), sandwiched between two 25 μm silicon pieces – required for rigidity

- 1 Achieves 0.09% X_0
- 1 Silicon on SiC foam (~ 8% density)
 - 1 Silicon (25 μm) on SiC foam (1.5mm);
 - 1 Achieves 0.16% X₀
 - \perp 0.09% X₀ possible with lower density foams (< 5%)

Thanks to Erik Johnson, RAL

Areas of Common Interest for LCFI and CALICE (personal opinion)

1 Detector simulations

v Vertex package – provides important building block for full detector simulation and performance checks against benchmark physics processes

1 Detector tests

 ${\rm v}\,$ Laser system at RAL could be used for both MAPS and CCD/ISIS test

- **1** Detector design
 - v Pulsed power storage supercapacitors considered for LCFI
- 1 Beam tests
 - ${\rm v}~$ Combined beam tests in the future welcome
 - v Some overlap in the electronics may be possible
 - v Presently resources for beam tests at LCFI are limited
 - v Could conduct first beam tests on CPC2 this year if all goes well

Conclusions

- **1 Vertex package near release**
 - v Major milestone for LCFI, huge amount of work by a small team
 - $\mathbf v\;$ Will provide important contribution to the MARLIN event reconstruction framework
 - **v** Eagerly anticipated worldwide
- **Detector R&D program progressing well:**
 - v Second generation CPCCD and readout chip being evaluated
 - ${\rm v}~$ Driver system using CMOS chip and transformers under development
 - v Third generation CMOS readout chips for CPC1/2 in design stage
 - v Design of second generation, small pixel ISIS2 underway
- **1** Mechanical support aims at $\leq 0.1\%$ X₀ using modern materials
- **1** Several areas of collaboration between CALICE and LCFI possible