Overview and progress from Calorimeter for ILC

Valeria Bartsch, University College London presenting the work of my colleagues

- Introduction
- UK activities
 - test beams analysis and data taking
 - DAQ on the way to a technical prototype
 - MAPS an interesting detector concept
 - PFA and physics analysis Higgs strahlung and WW scattering
 - mechanical and thermal studies

- Introduction
- UK activities
 - test beams analysis and data taking
 - DAQ on the way to a technical prototype
 - MAPS an interesting detector concept
 - PFA and physics analysis Higgs strahlung and WW scattering
 - mechanical and thermal studies

Members of the

12 countries

41 institutes

> 200 physicists

Goals of the Collaboration

To provide a basis for choosing a **calorimeter technology** for the ILC detectors

Physics prototypes

Various technologies (silicon, scintillator, gas) Large cubes (1 m³ HCALs) Not necessarily optimized for an ILC calorimeter Detailed test program in particle beams To **measure** electromagnetic and hadronic showers with unprecedented granularity

Technical prototypes

Appropriate shapes (wedges) for ILC detectors All bells and whistles (cooling, integrated supplies...) Detailed test program in particle beams

To **advance** calorimeter technologies and our **understanding** of calorimetry in general

To design, build and test **ILC calorimeter prototypes**

CALICE Projects and the Concepts

CALICE Proje	ects				
ECALs	Silicon - Tungsten MAPS - Tungsten		Detector Concept	Optimized for PFA	Compensating Calorimetry (hardware)
	Scintillator - Lead		SiD	Yes	No
HCALs	Scintillator - Steel		LDC	Yes	No
	RPCs - Steel		GLD	Yes	No
	GEMs- Steel		4 th	No	Yes
	MicroMegas - Steel				
TCMTs [*]	Scintillator - Steel	All calorimeters with very fine segmentation of the readout			

* Tail catcher and Muon Tracker

CALICE Projects and the Concepts

CALICE Projects			
ECALs	Silicon - Tungsten		
	MAPS - Tungsten		
	Scintillator - Lead		
HCALs	Scintillator - Steel		
	RPCs - Steel		
	GEMs- Steel		
	MicroMegas - Steel		
TCMTs [*]	Scintillator - Steel		

Detector Concept	Optimized for PFA	Compensating Calorimetry (hardware)
SiD	Yes	No
ILD	Yes	No
4 th	No	Yes

CALICE projects on detectors with calorimeters with very fine segmentation of the readout

* Tail catcher and Muon Tracker

PFAs and Calorimetry

Fact

Particle Flow Algorithms improve energy resolution compared to calorimeter measurement alone (see ALEPH, CDF, ZEUS...)

How do they work?

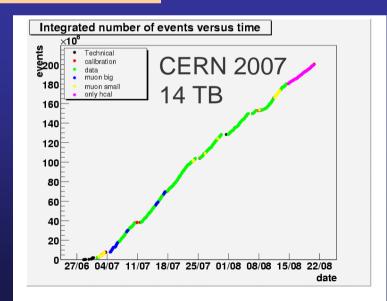
Particles in jets	Fraction of energy	Measured with	Resolution [σ ²]
Charged	65 %	Tracker	Negligible
Photons	25 %	ECAL with 15%/ E	0.07 ² E _{jet}
Neutral Hadrons	10 %	ECAL + HCAL with 50%/ E	0.16 ² E _{jet}
Confusion	The real	challenge	0.04 ² (goal)

-18%/ E

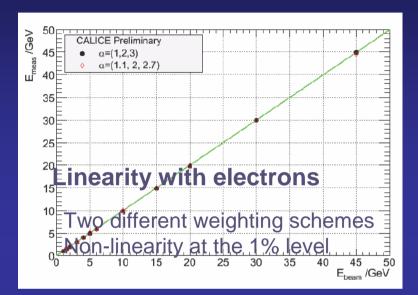
Minimize confusion term	Maximize segmentation of the calorimeter readout		
High segmentation	$O(<1 \text{ cm}^2)$ in the ECAL $O(\sim1 \text{ cm}^2)$ in the HCAL $\sim O(10^7 - 10^8)$ channels for entire ILC calorimeter		
Can PFAs achieve the ILC goal?	YES!		

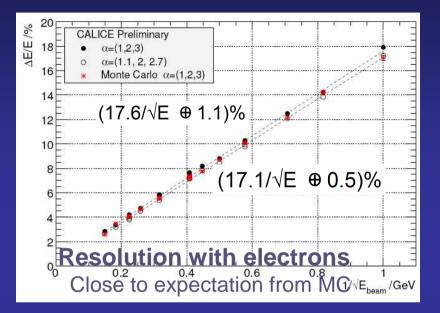
Status of the various projects

Calorimet er	Technology	Detector R&D	Physics Prototype	Technical Prototype	
ECALs	Silicon - Tungsten	Well advanced	Exposed to beam	Design started	<
	MAPS - Tungsten	Started			Used in CERN and
	Scintillator - Lead	Well advanced	Exposed to beam		DESY testbeams
HCALs	Scintillator - Steel	Well advanced	Exposed to beam	Design started	<u></u>
	RPCs - Steel	Well advanced	Almost ready to be build	(Design started)	
	GEMs- Steel	Ongoing			
	MicroMegas - Steel	Started			
TCMTs	Scintillator - Steel	Well advanced	Exposed to beam		4 9

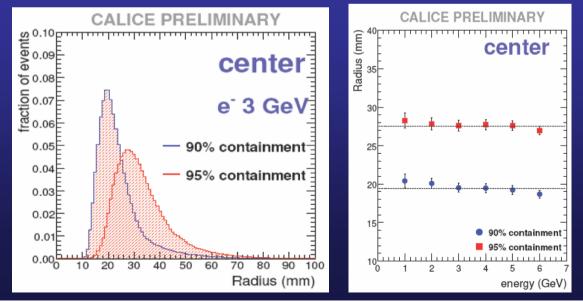

- Introduction
- UK activities
 - testbeams analysis and data taking
 - DAQ on the way to a technical prototype
 - MAPS an interesting detector concept
 - PFA and physics analysis Higgs strahlung and WW scattering
 - mechanical and thermal studies

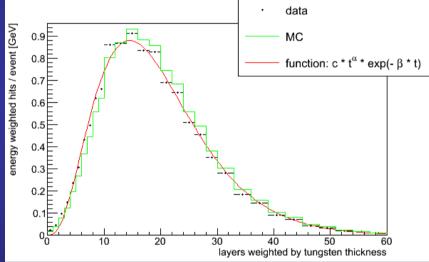
CALICE Test Beam Activities


DESYelectrons 1 – 6 GeV2006Silicon-ECAL
Scintillator HCALScintillator ECAL
TCMTScintillator ECAL
2006 and 2007CERNelectrons and pions 6 – 120 GeV2006 and 2007Silicon-ECALScintillator HCALScintillator HCAL


UK activities concentrate on test beam operation and ECAL analysis

TCMT (complete)


CALICE Test Beam Activities - data analysis 2006: Special emphasis on UK contributions


Transverse shower profile

Moliere radius R_M contains 90% of EM shower energy independently of energy $R_M(W) = 9 \text{ mm}$ Gap will increase $R_M(W) \rightarrow R_M^{eff}$

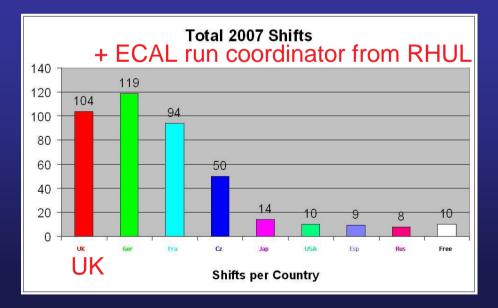
CALICE Test Beam Activities - analysis of 2006 data: detailed look

Example: longitudinal shower profile

data suggest that more preshowering happens than MC
leakage energy is not consistent with estimates from beam energy

discrepancy between MC and data:

- low pulse height hits
- interwafer gaps
- shower depth
- number of hits
- transverse shower shape
- mismatch of energy scale between CERN and DESY

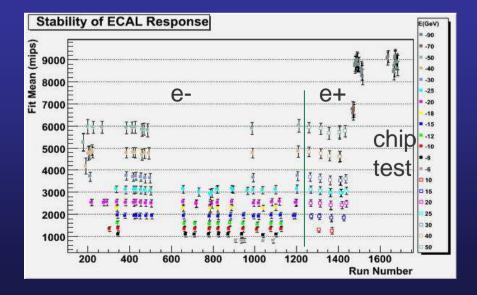

Ideas to investigate:

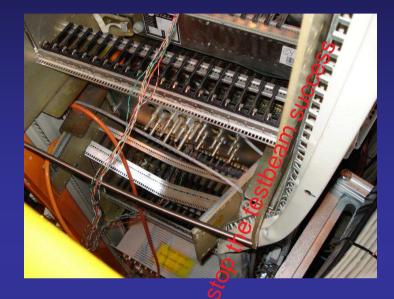
- understand beam line better
- optimise alignment and rotation of detector
- understand passive material in front of calo better
- optimise calibration

CALICE Test Beam Activities - 2007

Physics prototype

3 structures with different W thicknesses 30 layers; 1 x 1 cm² pads 12 x 18 cm² instrumented in 2006 CERN tests about 6480 readout channels

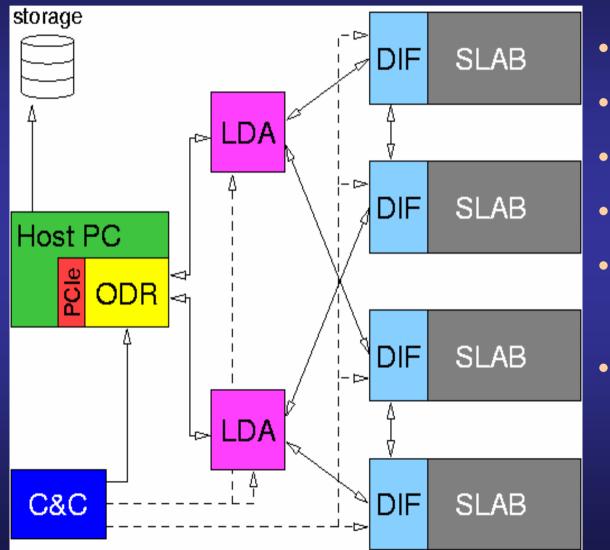




CALICE Test Beam Activities - 2007

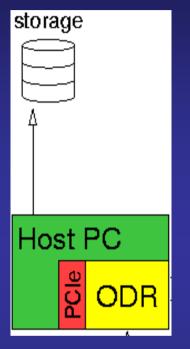
summary of data taking:

- π⁺, π⁻, e⁺, e⁻, p:
 6-180 GeV
- with position scans
- angles from 0⁰ 30⁰

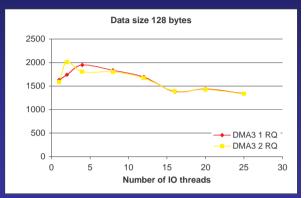

Test beam activities with physics prototypes

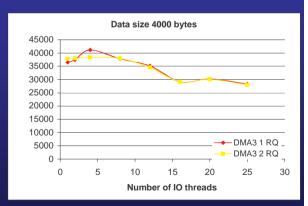
	Project	2007b	2008a	2008b	2009a	2009b
ECAL	Si-W	CERN test beam	FNAL test beam			
	MAPS	1 st prototype chip		2 nd prototype chip	DESY test beam	
	Scintillator			FNAL test beam		
HCAL	Scintillator	CERN test beam	FNAL test beam			
	RPC	Vertical slice test in FNAL test beam	Physics prototype construction	FNAL test beam		
	GEM	Vertical slice test In FNAL test beam	Further R&D on GEMs Physics prototype construction		FNAL test beam	
	MicroMegas		1 plane			
ТСМТ	Scintllator	CERN test beam	FNAL test beam			

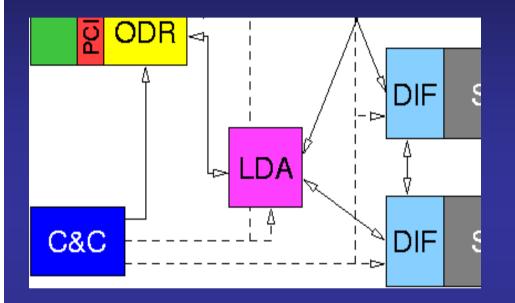
+ further R&D, technical prototype designs, construction & testing...


- Introduction
- UK activities
 - testbeams analysis and data taking
 - DAQ on the way to a technical prototype
 - MAPS an interesting detector concept
 - PFA and physics analysis Higgs strahlung and WW scattering
 - mechanical and thermal studies

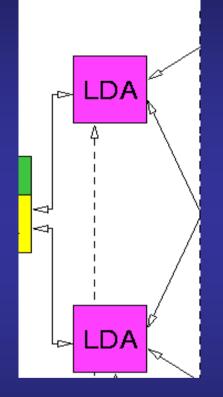
DAQ architecture


- Slab hosts VFE chips
- DIF connected to Slab
- LDA servicing DIFs
- LDAs read out by ODR
- PC hosts ODR, through PClexpress
- C&C routes clock, controls


ODR and Data Rates



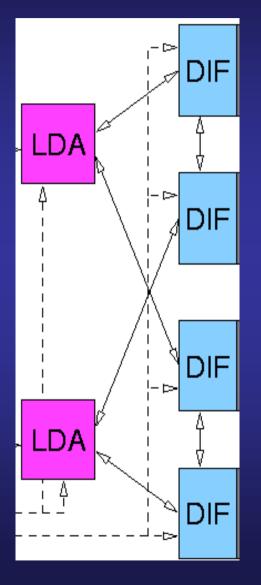
- ODR is a commercial FPGA board with PCIe interface (Virtex4-FX100, PCIe 8x, etc.)
- Custom firm- and software
- DMA driver pulls data off the onboard RAM, writes to disk
- Performance studies & optimisation


Clock & Controls Distribution

- Fast Controls: encoded through the LDA-DIF link
- Low-latency fast signals: distributed 'directly'

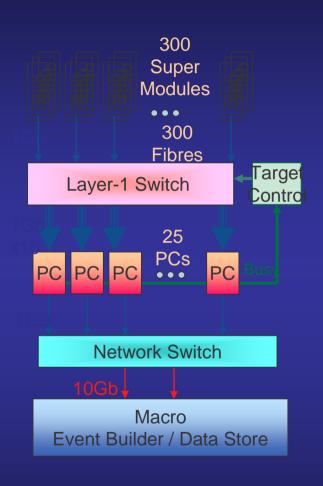
- C&C unit provides machine clock and fast signals to ODR, LDA (and DIF?)
- Clock jitter requirement seems not outrageous (at the moment)

LDA and link to ODR



1st Prototype is again a commercial FPGA board with custom firmware and hardware add-ons:

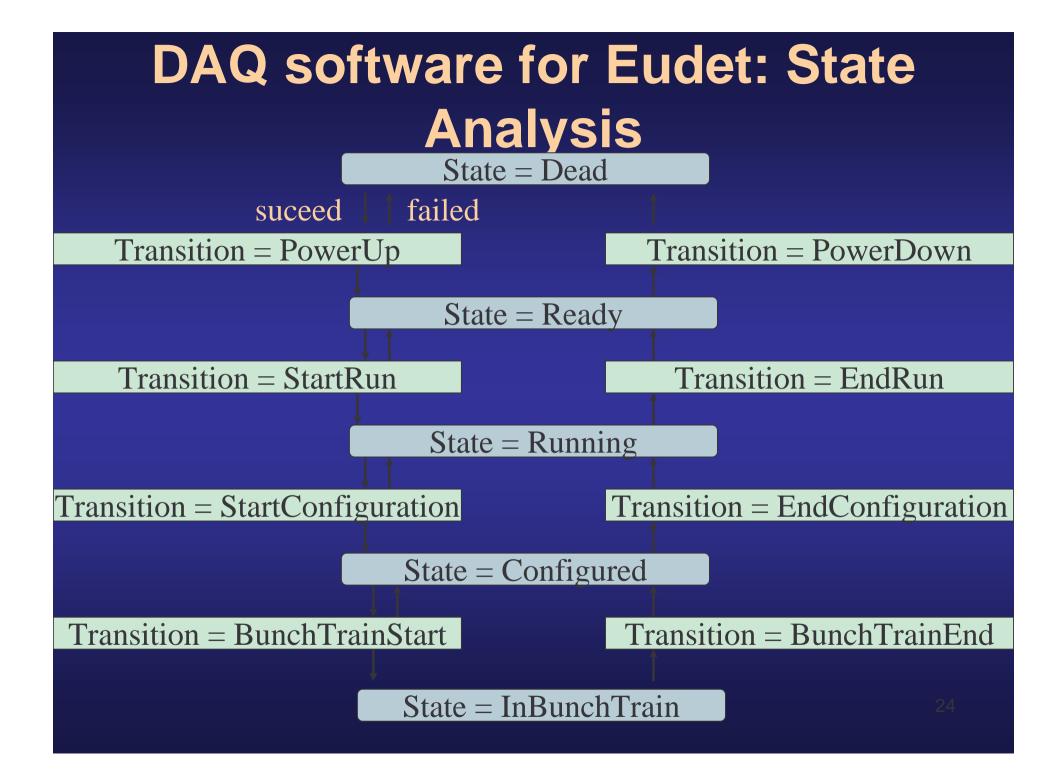
- Gbit ethernet and Glink Rx/Tx for ODR link probably optical
- Many links towards DIFs


LDA-DIF link

LDA-DIF link:

- Serial link running at multiple of machine clock
- 50Mbps (raw) bandwidth minimum
- robust encoding (8B/10B or alike)
- anticipating 8...16 DIFs on an LDA, bandwidth permitting
- LDAs serve even/odd DIFs for redundancy DIF-DIF link:
- Redundancy against loss of LDA link
- Provides differential signals:
 - Clock in both directions
 - Data and Control connections
 - Two spares: one each direction

network


general outline of DAQ design

Optical switch to act as Layer-1 Switch

Optical switch:

- fulfills routing and dispatching tasks
- tested that the switch works according to its specification
- needs to be verified within the DAQ framework that it adds additional benefit



- Introduction
- UK activities
 - testbeams analysis and data taking
 - DAQ on the way to a technical prototype
 - MAPS an interesting detector concept
 - PFA and physics analysis Higgs strahlung and WW scattering
 - mechanical and thermal studies

MAPS ECAL

Monolithic Active Pixel Detectors

In-pixel comparator and logic $50 \times 50 \ \mu m^2$ pixels 10^{12} pixels for the ECAL

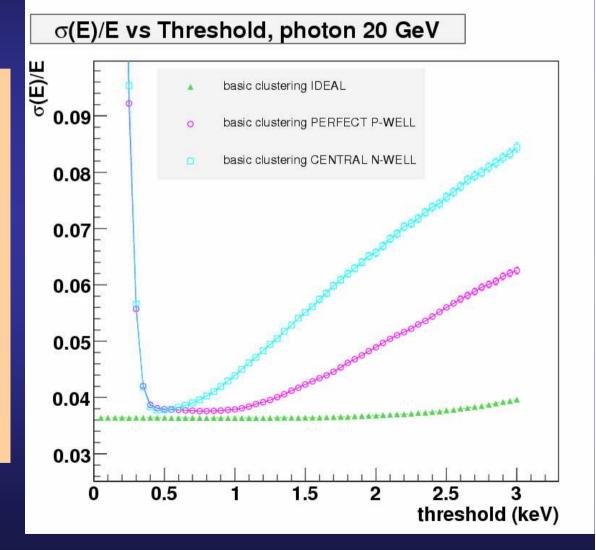
Digital (single-bit) readout

Test Sensor

. . . .

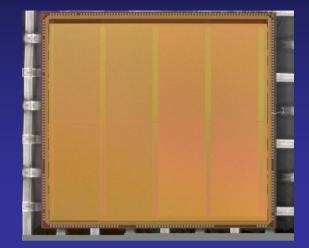
Area of 1 x 1 cm² \sim 28,000 pixels

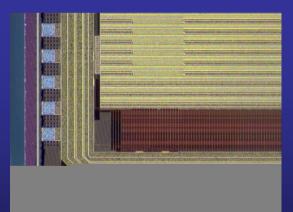
Testing different architectures nwell or p-well to prevent charge spread


Extensive simulation studies Charge collection effects Resolution versus threshold

Effect of charge spread model

Optimistic scenario:


Perfect P-well after clustering: large minimum plateau Ł large choice for the threshold !!


Pessimistic scenario: Central N-well absorbs half of the charge, but minimum is still in the region where noise only hits are negligible + same resolution !!!

plans for the autumn

- Sensors delivered this summer, tests can go forward
- Charge diffusion studies with a powerful laser setup at RAL :
 - 1064, 532 and 355 nm wavelength,
 - focusing < 2 μm,
 - pulse 4ns, 50 Hz repetition rate,
 - fully automatized
- Cosmics and source setup to provide by Birmingham and Imperial respectively.
- Work ongoing on the set of PCBs holding, controlling and reading the sensor.

- Introduction
- UK activities
 - testbeams analysis and data taking
 - DAQ on the way to a technical prototype
 - MAPS an interesting detector concept
 - PFA and physics analysis Higgs strahlung and WW scattering
 - mechanical and thermal studies

news from the Pandora particle flow algorithm

Eight Main Stages:

- Preparation (MIP hit ID, isolation, tracking)
- Loose clustering in ECAL and HCAL
- Topological linking of clearly associated clusters
- Courser grouping of clusters
- Iterative reclustering
- Photon recovery (new)
- Fragment removal (new)
- Formation of final particle flow objects

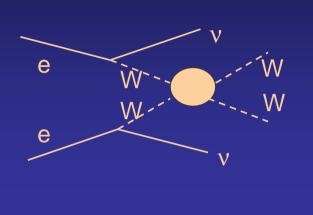
E _{jet}	σ _E /E =	σ _E /E
	α/ (E/GeV)	
45 GeV	0.295	4.4%
100 GeV	0.305	3.0%
180 GeV	0.418	3.1%
250 GeV	0.534	3.3%

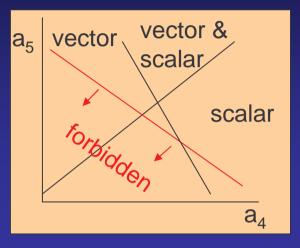
Mark Thomson's comment: Now convinced that PFA can deliver the required ILC jet

energy performance

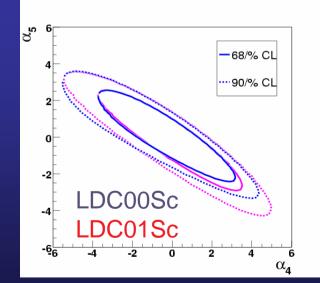
news from the Pandora particle flow algorithm

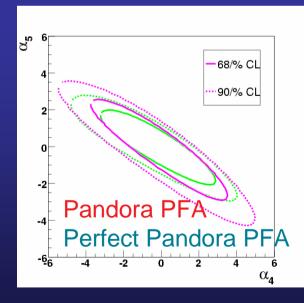
Perfect Pandora added to Pandora which relies on MC information to create the ProtoClusters.


	$\sigma_{\rm E}/{\rm E} = \alpha/~({\rm E}/{\rm GeV})$					
E _{jet}	PerfectPandora	Pandora				
100 GeV	0.220	0.305				
180 GeV	0.305	0.418				


 \Rightarrow the current code is not perfect, things will get better

Future developments:


- moving to LDCTracking is highest priorities
- optimisations of newly introduced features


WW scattering

WW scattering model independent way of checking the unitarity breakdown of the standard model

⇒ detector
 optimization with this
 study possible
 ⇒ shows room for
 improvement within
 Pandora

- Introduction
- UK activities
 - testbeams analysis and data taking
 - DAQ on the way to a technical prototype
 - MAPS an interesting detector concept
 - PFA and physics analysis Higgs strahlung and WW scattering
 - mechanical and thermal studies

Mechanical and Thermal Studies

- Glue testing now complete
 - Will continue with very-long-term testing using the same samples, checking over ~months timescales.
- Mechanical Work
 - Agreed areas to cover with French groups
 - Attachment of wafers to PCBs
 - Testing of assemblies
 - Mechanical layout of end of modules
 - Full CAD workup of Electrical and Cooling connections

Conclusion:

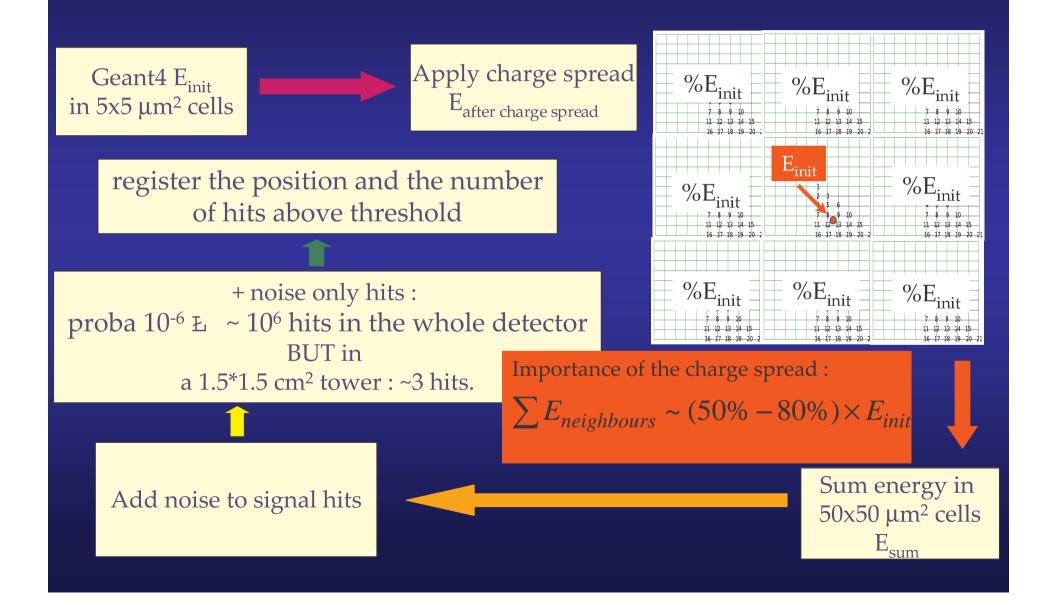
• test beams:

2006 analysis needs to be finalized, 2007 analysis not yet started, challenging program for 2008/2009

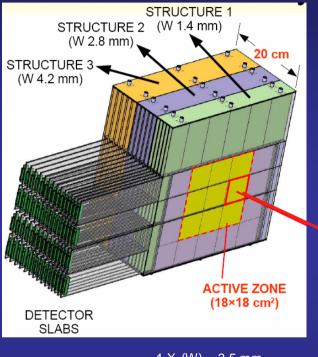
• DAQ:

at the moment only components ready, need to be integrated to a whole system until 2009

• MAPS:


on a good way, in the phase of prototype design

• PFA:


success story of the UK, WW scattering a good testing analysis, probably need a few more physics analysis

backup slides

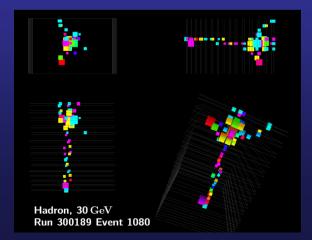
Digitisation procedure

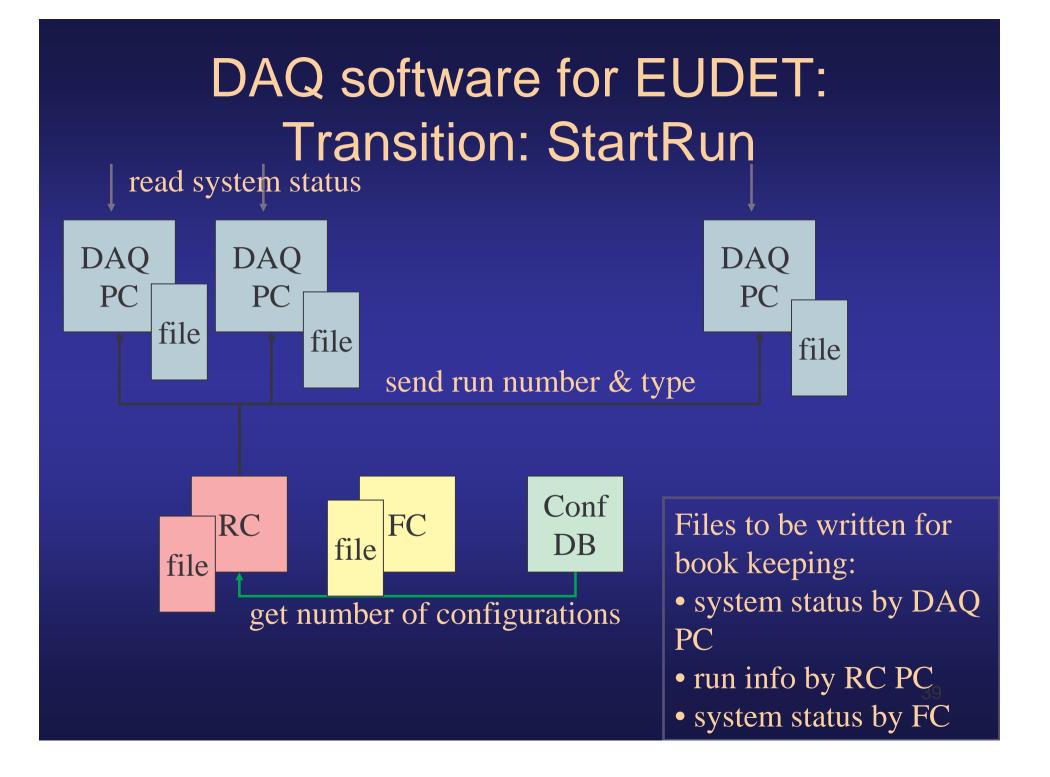
Silicon-Tungsten ECAL

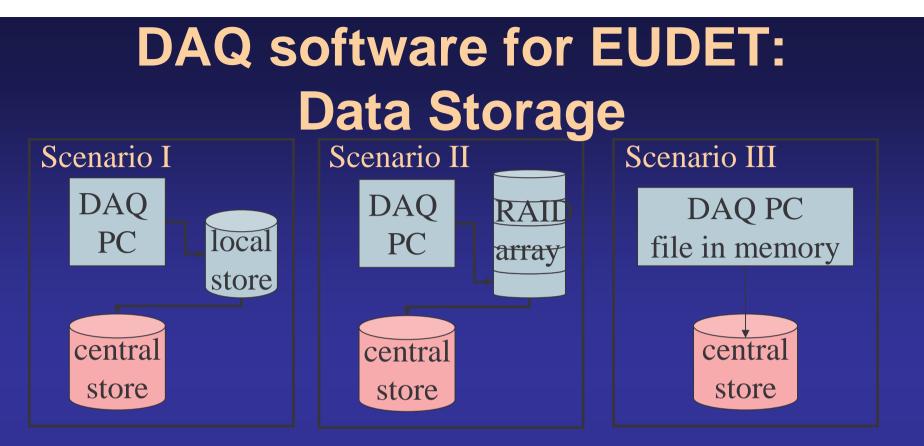
 $1 X_0(W) = 3.5 \text{ mm}$

Electronic Readout

Front-end boards located outside of module Digitization with VME – based system (off detector)

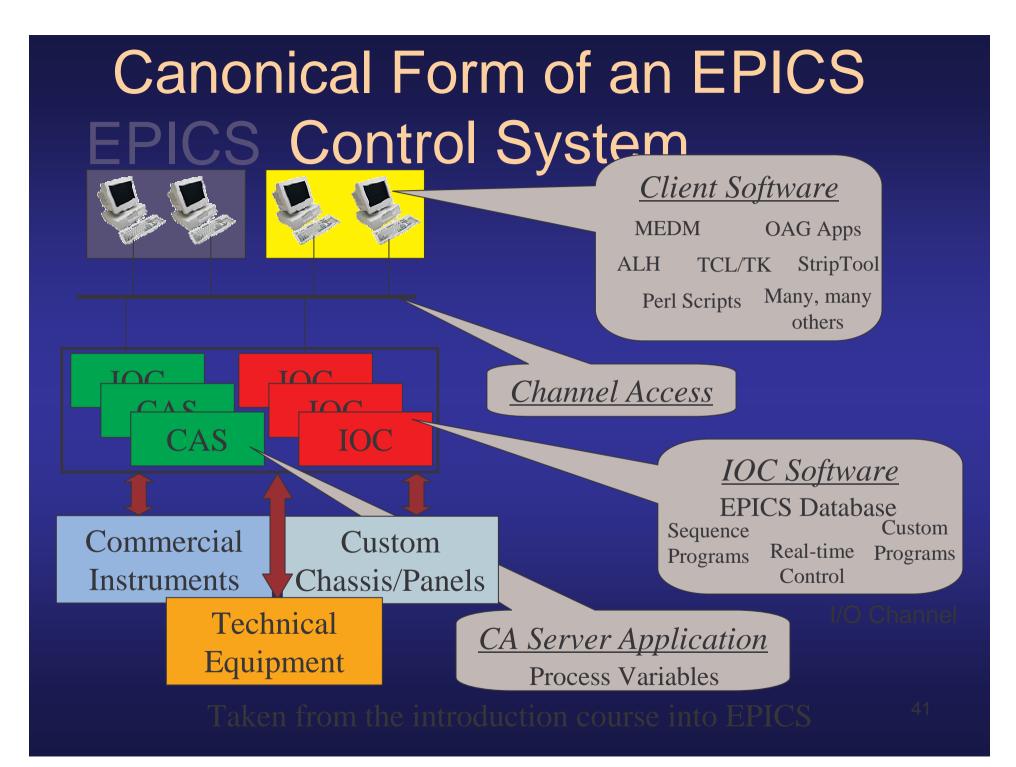

AL Physics prototype

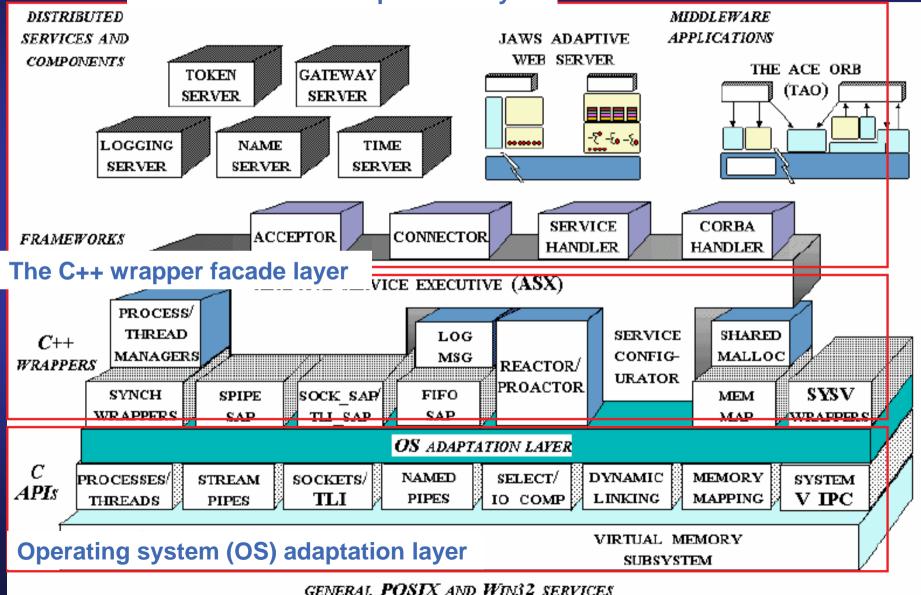

3 structures with different W thicknesses 30 layers; 1 x 1 cm² pads 12 x 18 cm² instrumented in 2006 CERN tests \rightarrow 6480 readout channels



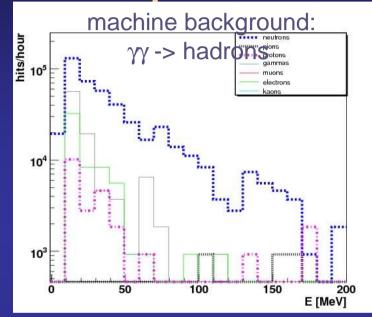
Tests at DESY/CERN in 2006

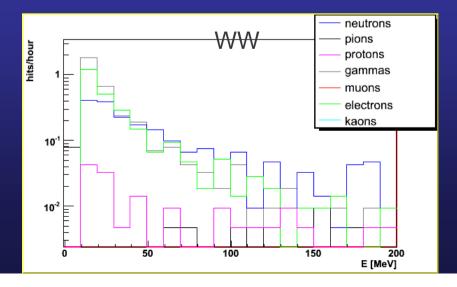
Electrons 1 – 45 GeV Pions 6 – 120 GeV

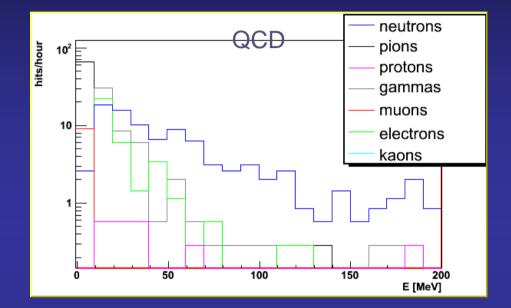


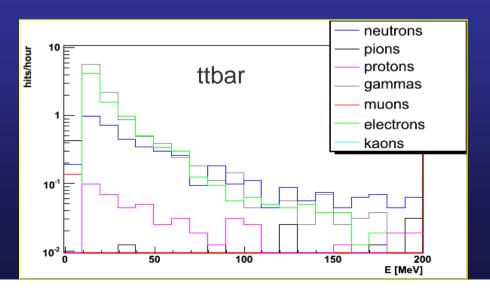

• which scenario to choose depending on the bandwidth with which the data gets produced: (I) up to 200Mbit/sec, (II) up to ~1600Mbit/sec, (III) from there on

• desirable to have files because transfer is easier and in case of timing problems error handling is easier, but keep system flexible for now



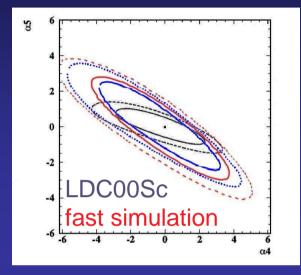

ACE Architecture

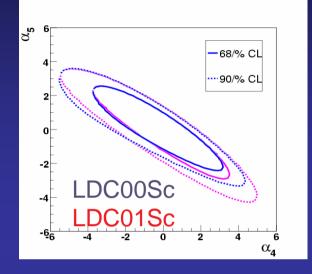

The frameworks and patterns layer

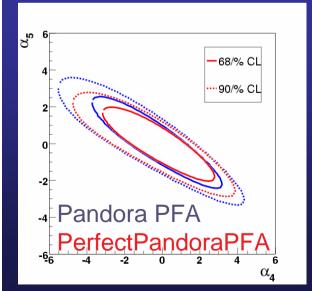


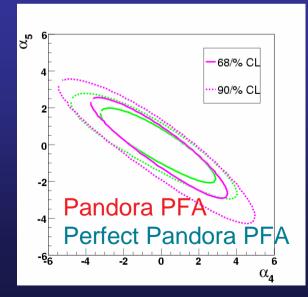
energy spectrum of particles in the FPGAs

Other FPGAs

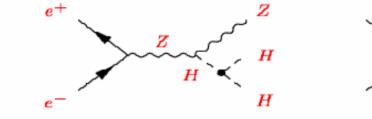

Virtex II X-2V100 Virtex II X-2V6000	0.05 SEUs/h
Altera Stratix	0.61 SEUs/h
Xilinx XC4036XLA	0.01 SEUs/h
Virtex XQVR300	0.12 SEUs/h
9804RP	0.04 SEUs/h

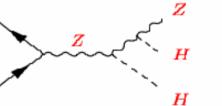

1 SEU between 0.5 hours and 12 days depending on FPGA chosen

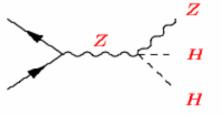

DIF Functionality

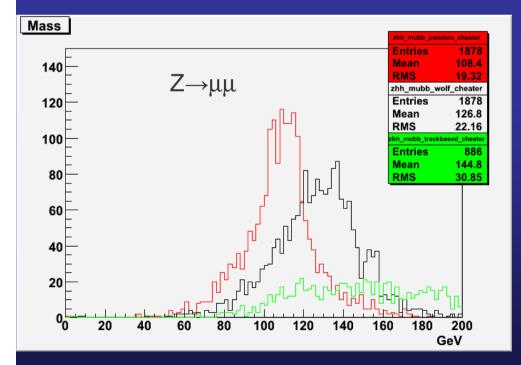

- Receive, regenerate and distribute clocks
- Receive, buffer, package and send data from VFE to LDA
- Receive and decode incoming commands and issue corresponding signals
- Control the DIF-DIF redundancy connection
- Receive, decode and distribute slow control commands
- Control power pulsing and provide watchdog functionality
- Provide an USB interface for stand-alone running and debugging
-on top of that: all the things we did not think of so far

WW scattering

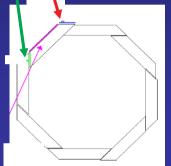





 $\Rightarrow simulation$ consistent with older simu $\Rightarrow detector$ optimization with this study possible $\Rightarrow shows room for$ improvement within Pandora


Higgsstrahlung

study of the Higgs self coupling constant



- Pandora has very good RMS
- Wolf reconstructs too high mass
- Problem with muon id affects the higgs reconstruction in TrackbasedPFA

47

Thermal studies in ECAL Barrel

- A CALICE module will dissipate at least 300 W Ł active cooling required
- Obvious places : this end. Problem : already busy with slab readout.
- Alternatively : this end Disadvantage : dead area.

• Or this face.

RESULTS :

Ł Assuming a module is 26 cells long :

 $T_{bothEnds} = 10.3$ °C only one end cooled $T_{middleEnds} = 2.6 \ ^{\circ}C$ both ends cooled

- Manchester will build a cooling test setup to verify simulation Ł
- environment for active cooling tests Ł