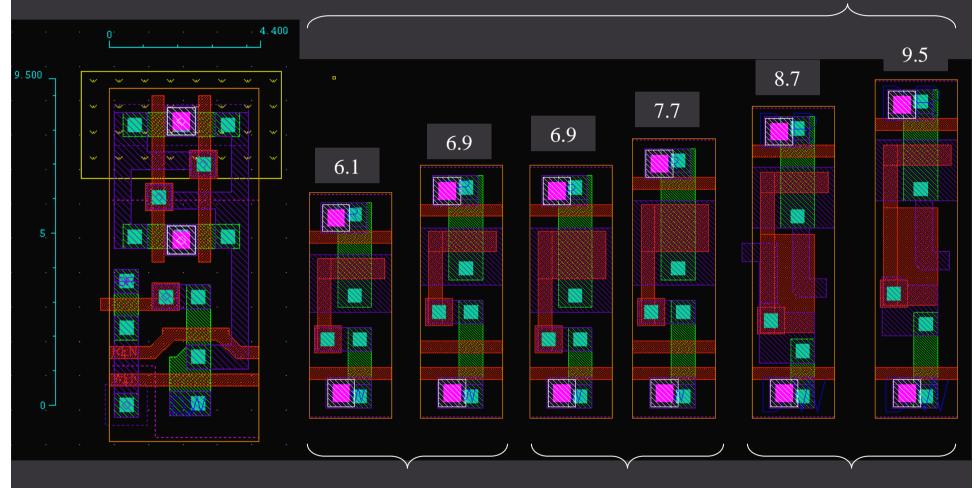
TeraPixel APS for CALICE

Progress meeting 9th Dec 2005

Jamie Crooks, Microelectronics/RAL

• XC035


- Standard 0.35um process from XFAB
- 5um epitaxial layer
- Qualified for stitching

• XH035

- High voltage variant of the 0.35um process
- 15um epitaxial layer
- Not qualified for stitching, but available as a nonreleased option, would incur set-up fee 3k-30k EUR
- Triple well technology
- Assura parasitic extraction models
- Several diode options to consider (see process specification doc)

SRAM vs DRAM

SRAM

DRAMS
SIMPLE (~OPIC)

DRAMs LONGER GATE DRAMs

CPOD CAP

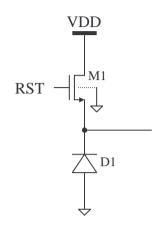
DRAM lifetime simulations

Process corners: Typical, worst-power (wp), worst-speed (ws)

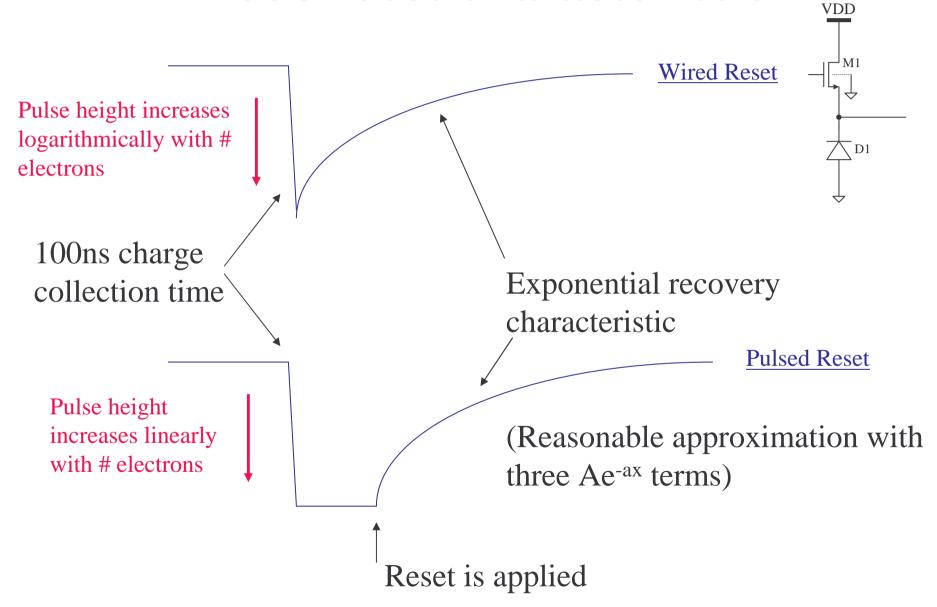
	SIMPLE	SIMPLE+2 W	LONG	LONG+2W	CPOD	CPOD+2W
Lifetime (typ)	2.5 ms	5.5 ms	4.5 ms	9.7 ms	5.2 ms	11.2 ms
Lifetime (wp)	0.2 ms	1.8 ms	0.38 ms	3.3 ms	0.4 ms	3.4 ms
Lifetime (ws)	2.4 ms	4.8 ms	4.0 ms	8.1 ms	5.2 ms	10.4 ms

Applying negative 'off' bias to reduce leakage further:

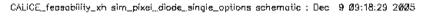
	SIMPLE	SIMPLE+2 W	LONG	LONG+2W	CPOD	CPOD+2W
Lifetime (typ)	2.8	5.6	5.1	10.1	5.9	11.7
Lifetime (wp)	3.4	6.7	6.5	12.8	6.7	13.3
Lifetime (ws)	2.3	4.5	4.0	7.8	5.2	10.24

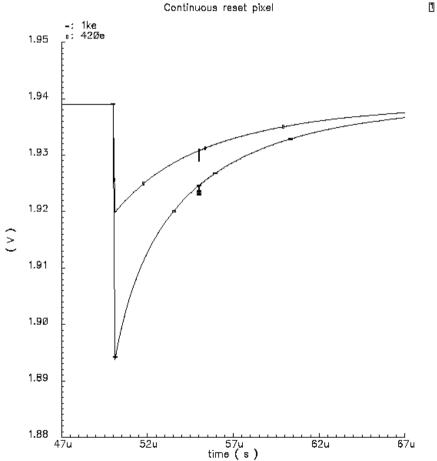

Diode operation

Pulsed Reset

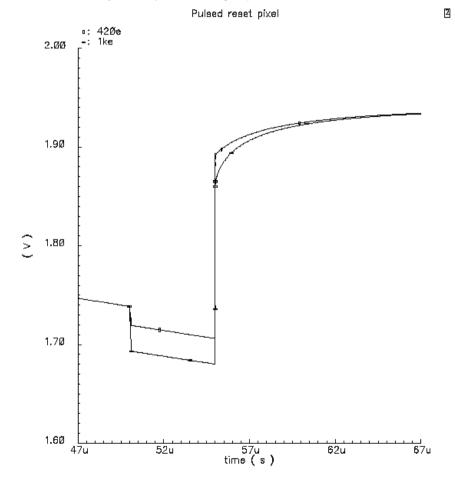

- In-pixel self-reset circuit? More complex.
- Hard/soft reset
- Large output voltage range (~1.7v)
- 210e threshold à 9mV drop in diode voltage

Continuous Reset

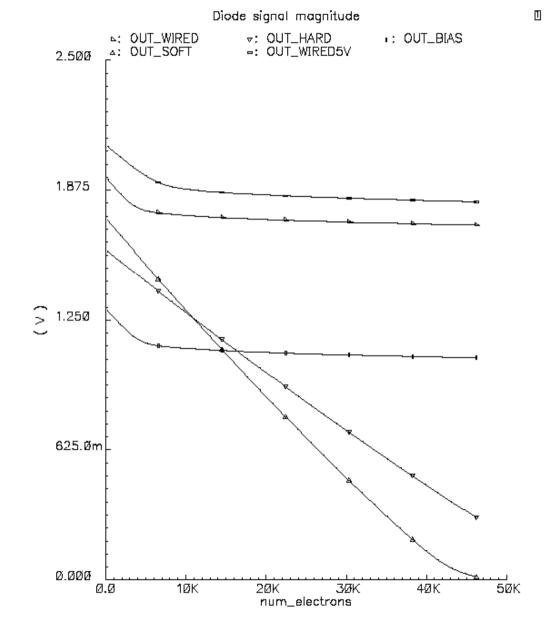

- Logarithmic response
- May take several us to reset
- Small output voltage range (200mV)
- 210e threshold à 9mV drop in diode voltage



Diode reset characteristic

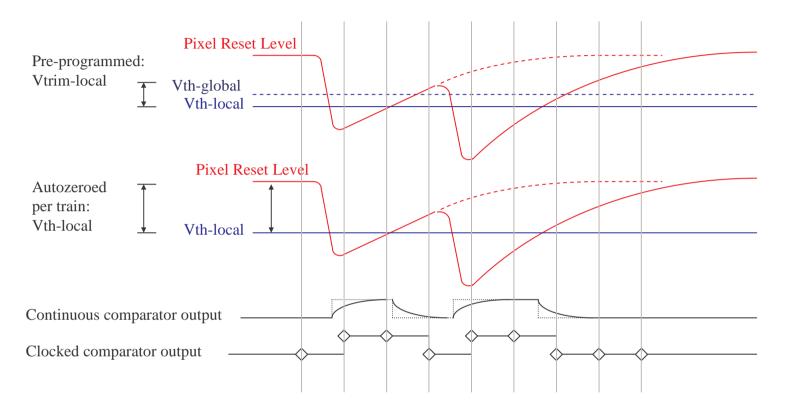


Simulations

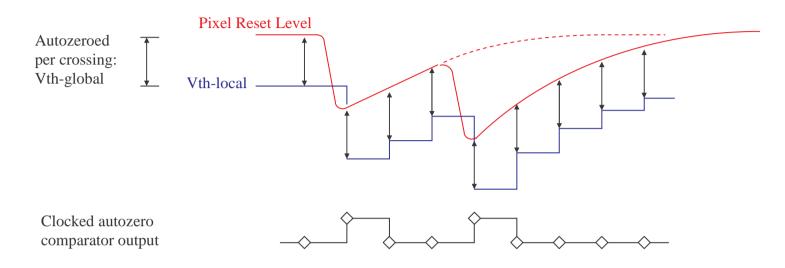


Parametric plot

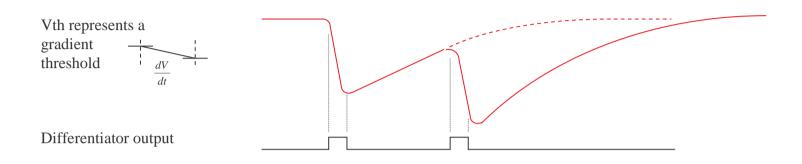
Log response continuous reset pixels


Linear response pulsed reset pixels

Comparator Types


- Voltage comparator, fixed threshold
 - Clocked
 - Continuous current
- Voltage comparator, moving threshold
 - Clocked
- Differentiation comparator
 - Continuous current

Voltage comparator: Fixed Threshold


- Continuous (low current, asynchronous) or clocked (current spikes)
- Pixel/localised offset trim: Programmed & stored, or possibly autocalibrated between pulse trains?
- As used in OPIC, but <u>not suitable for CALICE</u>

Voltage comparator: Moving Threshold

- Clocked circuit (current spikes)
- Real-time pixel value is sampled each clock cycle: Vsample + Vth gives local threshold for comparison
- Detects each hit once
- Immune to pixel reset rate
- Clocked design typically 2 clock signals (sometimes more, or nonoverlapping schemes necessary)

Differentiating Comparator

- Continuous operation (asynchronous output)
- Capacitive coupling gives a current proportional to rateof-change of the voltage input
- Detects each hit once (asynchronous duration of charge collection is linear ramp an accurate model?)
- Immune to pixel reset rate
- (Needs circuit development)

Questions...

- Take diode reset model and investigate probability of pile-up
 - Assume wired-reset style pixel
 - Is pile-up rate acceptable?
 - Large signal
- Physics simulations à # electrons figures for a 50um pixel with 4 diodes
 - Max & Min signals on individual diodes for 1 MIP
 - Necessary threshold level for optimum crosstalk
 - 4 diodes preferred from electronics view is this enough for the physics?
- Is my hit modelling reasonable?

Multiple diodes

- N diodes, analog signal addition
 - Forked source-follower circuit ($0.9 * \Sigma$)
- N diodes, Individual select
 - Rotational selection wires 1 diode to pixel comparator and logic
- N parallel diodes, single collecting node
 - StarTracker: 25um pixels, 4 diodes, ~15fF node capacitance
 - Iimas: 32um pixels, 2 diodes,

Summary / Design Choices

• <u>Diodes</u>:

• Pixel size:

Number of Diodes:

• <u>Reset</u>:

• Comparator:

• Comparator:

• Memory:

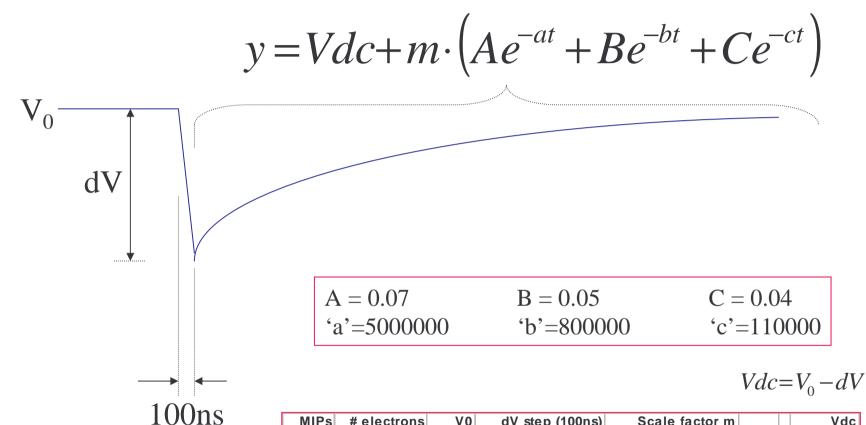
– Variant:

Parallel / Analog-sum / Seq. select

25um / 40um / **50um**

1 / **4** / more

Switched / Continuous


Fixed threshold / Adaptive threshold

Continuous / Clocked

SRAM / DRAM

SIMPLE / LONG / CPOD

REFERENCE: Diode behaviour approximation

MIPs	# electrons	V0	dV step (100ns)	Sca	ale factor m	Vdc
1	420	1.939	19.15	mV	0.120	1.920
3	1260	1.939	56.78	mV	0.356	1.882
5	2100	1.939	92.42	mV	0.579	1.847
7	2940	1.939	123.37	mV	0.773	1.816
9	3780	1.939	145.97	mV	0.914	1.793
11	4620	1.939	159.57	mV	0.999	1.779