TeraPixel APS for CALICE

Progress meeting 30th March 2006 Jamie Crooks, Microelectronics/RAL

ASIC Specifications

ASIC2

ASIC1

50 micron pixels	50 micron pixels
5/15um EPI (decide which now & fix)	15um EPI
Eg (128x128 = 6x6mm) * 4 pixel designs?	1 large area, single pixel design
4 diodes per pixel, analog sum	4 diodes per pixel, analog sum
Minimum signal 1 MIP	Minimum signal 1 MIP
\rightarrow 400 electrons (giulio to confirm)	\rightarrow 400 electrons (giulio to confirm)
\rightarrow Threshold ~ 200 electrons (giulio to confirm)	\rightarrow Threshold ~ 200 electrons (giulio to confirm)
Maximum signal ~10 MIPs (guilio?/paul/nigel?)	Maximum signal ~10 MIPs?
In-Pixel Comparator	In-Pixel Comparator
\rightarrow To "fire" within 100ns of threshold crossing	\rightarrow To "fire" within 100ns of threshold crossing
\rightarrow To recover/reset within 400ns	\rightarrow To recover/reset within 100ns
→Target noise rate 10 ⁻⁵	\rightarrow Target noise rate 10 ⁻⁶
Timestamp:	<u>Timestamp:</u>
\rightarrow ~4k unique time codes at 150ns update rate	\rightarrow ~14k unique time codes at 150ns update rate
\rightarrow 12bits [enough for proof of principal?]	\rightarrow 16bits [tbd]
\rightarrow Does not have to be a global signal,	\rightarrow Does not have to be a global signal,
could be position-dependant/decoded	could be position-dependant/decoded
In-Pixel Memories:	In-Pixel Memories:
→Minimum 4	→Minimum 4
\rightarrow 12bit resolution [to match timestamp resolution]	\rightarrow 16bit resolution [to match timestamp resolution]
→Maximum 4	→Maximum 16
\rightarrow In-pixel memory-management WRITE and READ	\rightarrow In-pixel memory-management WRITE and READ

ASIC Specifications

ASIC1

Test structures - single reticle / several structures? Low power in mind Maximise charge collection → minimise NWELLs in pixel Maximise active area Flip-chip solder/bump pads Edge pads for wire/bump bonding May use extra control & power signals for debug May use external components No data reduction on-chip

Sparse readout

→Row,column+timestamp
→1200 max row/col length
→11bits each row & col address
→22+16=38bits per hit
→Pipelined for max readout rate
98ms available for readout
5ms realistic for DRAM lifetime
No data storage at periphery?
Parallel data output off-chip (standard logic level

ASIC2

Test sensors for beam tests – full reticle / stitched(?) Implement low power circuits Maximise charge collection → minimise NWELLs in pixel Maximise active area Flip-chip solder/bump pads Localised central area of pads? Minimise control & power signals Minimise external components Data reduction on chip?

Sparse readout →Row,column+timestamp →1200 max row/col length →11bits each row & col address →22+16=38bits per hit →Pipelined for max readout rate 98ms available for readout 5ms realistic for DRAM lifetime Temporary data store in periphery? High speed serial LVDS tx off-chip

Scope of ASIC design work at RAL

Includes (design)

Pixels & peripheral ASIC circuitry

→Full ASIC 1 spec to be agreed prior to design work (~May 2006)

→Full ASIC 2 spec to be agreed prior to design work (~June 2007 (tbc))

IDR & FDR for each ASIC

Interim & final pixel/die NWELL profiles for physics simulations

Peripheral/example PCB circuit schematics

Solder/bump bond pads (to spec ←)

Off-chip drivers (to spec ←)

Excludes

Identify PCB/Assembly house

 \rightarrow required for spec of bump bond pads

Bump bonding feasibility & techniques searches

All aspects of long/high-speed PCBs

 \rightarrow May define transmission protocol / off-chip driver requirements

Controller FPGAs

System-level design

Physics simulations

Thermal modelling

Scope of ASIC testing at RAL

Greatest Risks to ASIC design

- In-pixel Memory management (read/write select
 - Asynchronous state machine?
 - N-Stage shift register (lots of transistors!)
 - Local centralised controller?
- In-pixel comparator (to meet noise rate at low power
- Analog Sum
 - Forked Source follower needs characterising
 - Other circuits?

Memory Management: Local Controller

- 1 in 2N pixels is a <u>Dead Pixel</u> called a "Local Controller"
- The local controller is hard wired to every comparator and memory register in its jurisdiction (2N pixels)
- The local controller manages the Hit Flags and register enable signals, such that it will fill its pixel's registers sequentially as hits occur.
- During readout, a token passes through the column of "Local Controllers" these sequence the readout of their "hit" registers and send row/column addressing to the column base to reconstruct complete hit data.

Memory Management: Local Controller

- Reduces complexity of pixel logic
 - Fewer Nwells in pixel \rightarrow better charge collection
 - Removes most of digital logic from pixel (good for analog signals)
 - Allows room to relax constraints on comparator circuit (better circuit)
- Dead Pixels, arranged as columns contribute to overall dead area
- Large routing overhead
 - 4 registers
 - N pixels
 - N+4N horizontal signal lines!
 - 4N hit-flags in controller
- Any logic/SRAMs even acceptable in the controller as charge is not collected!
- Acceptable dead area?
 - Preferred as a column of dead pixels?
 - Or scattered as reduced charge sensitivity?

Assuming controller is double-sided: N=8 \rightarrow 40 signals, 32 HitFlags @ 6% dead area N=12 \rightarrow 60 signals, 48 HitFlags @ 4% dead area N=16 \rightarrow 80 signals, 64 HitFlags @ 3% dead area

M1/M3/M5 take 20 signals each (N=12) @0.8um each = 16um width tracking

N=12 \rightarrow 24+1 * 50um = 1.25mm column set (single stitch unit?)

Towards Lower Power

Techniques to "recycle" charges often employ inductor based circuits Other techniques avoid inductors

→ Adiabatic Charging: Stepwise charging/discharging reduces energy dissipation by factor of N, using N voltage charging steps (/tank capacitors)

Summary

•Techniques do exist, would require more reading & simulations to see whether the CALICE chips could benefit

•Power efficiency should be a secondary focus for first ASIC

•Once pixel design is proven, second ASIC could develop and implement power-saving techniques

NP "Zipper" Logic may suit a stepwise clock?

(end)

