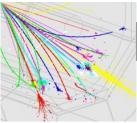
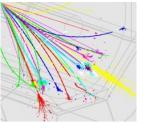


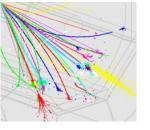
CALICE Meeting RAL 31.08.2007 M. Stanitzki



What is on today ?

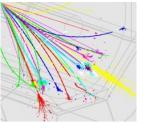

- Laser <-> DAQ communication
- Tungsten purchases (cont'd)
- Particle Flow
- News from SiD

Laser-DAQ communication


- Two pieces of Labview Code
 - Network Interface (Marcel)
 - Laser Control (Giulio)
- Each of them works nicely ... but not together
- Fixed some small issues with Konstantin's input
 - Main issue is to handle multiple events right
 - Network commands
 - Stage moving
 - Laser polling
- Non-trivial, but i think I have some ideas how to fix this
 - I'll try it next week

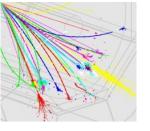
Tungsten

- Got several quotes
 - 1 kg ~ 160-200 US-\$
 - Delivery time 30-50 days
- Minimum quantity \sim 5-10 plates
- How many of each do we want ?
 - ⁻ 100 x 100 x 5 mm **10**
 - $^{-}$ 100 x 100 x 10 mm 5
- Tungsten alloy a lot cheaper (£ 80 per kg)



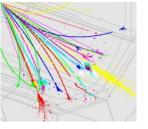
Tungsten Alloys

ALLOY							
DESIGNATION		K1700	K1701	K1750	K1800	K1801	K1850
Tungsten	(%)	90	90	92.5	95	95	97
	(g/cm3)	17	17	17.5	18	18	18.5
Density	(lb/in3)	0.61	0.61	0.63	0.65	0.65	0.67
Hardness	(Rc)	23	22	24	25	24	26
Ultimate Tensile	(psi)	125,000	110,000	125,000	125,000	110,000	120,000
Str.							
	(N/mm2)	860	760	860	860	760	830
Yield Strength	(psi)	80,000	90,000	90,000	90,000	85,000	95,000
	(N/mm2)	590	550	620	620	590	660
Elongation	(% in1in.)	12	4	10	8	2	6
Modulus of	(psi x 10)	45	40	46	48	45	50
Elasticity							
	(kN/mm2)	310	280	320	330	310	345
ALLOY							
DESIGNATION		K1700	K1701	K1750	K1800	K1801	K1850
Magnetic		slight	none	slight	slight	none	slight
Properties							



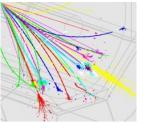
PFA work

- Long discussions with Jim Brau about Pandora
 - We like to reproduce his numbers
 - So went ahead and produced a lot of samples
- Primary questions
 - What is a best radius
 - What is the best B field
- Boils down to Sid-ish versus LDC'ish detector
- But it is not easy to reproduce Marks numbers at all

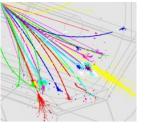


Scaling Detectors

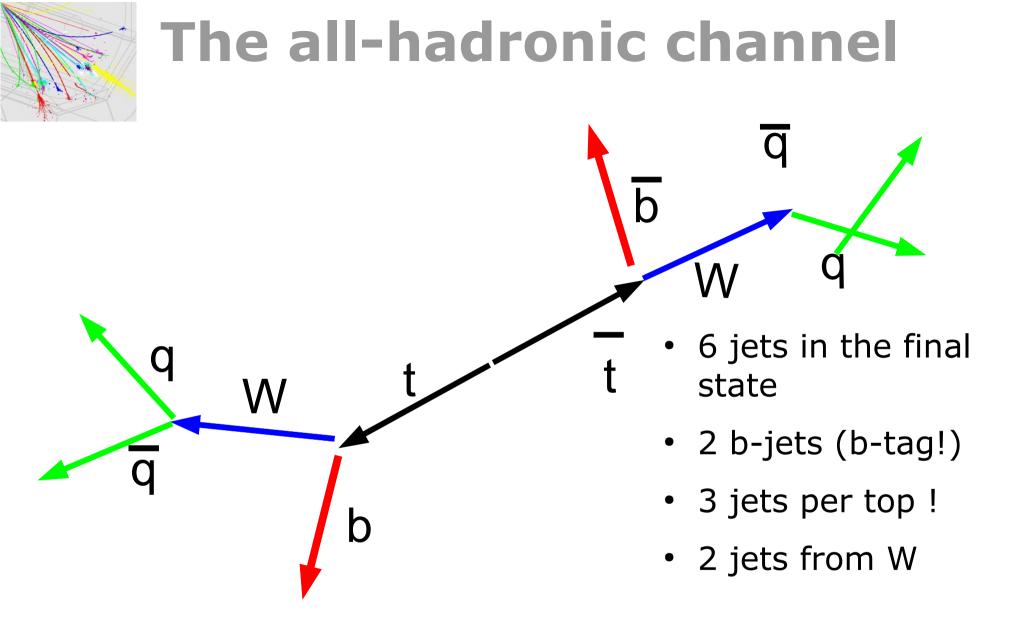
• Can be done in steering files

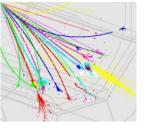

- /Mokka/init/globalModelParameter TPC_outer_radius 1270 mm
 /Mokka/init/globalModelParameter TPC_Ecal_Hcal_barrel_halfZ 1680 mm
 /Mokka/init/globalModelParameter Field_nominal_value 5.0 T
- Means regenerating photons, neutrons and Z's at each point ...
- playing with LDC00Sc and LDC01Sc
 - LDC00 is Mark's favorite , as it is large and has deep ECAL/HCAL
 - LDC01(Sc) is the one we are always using
- Lot of input from David Ward

GEAR

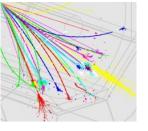

- Having the appropriate GEAR files for each detector is very important for PFA
- Not central repository to my knowledge
- LDC is very poorly documented
- MOKKAGEAR is a rudimentary at best
- Are we comparing apples and apples here ?
- Making GEAR files and getting them right without documentation is painful
- The source for a lot of problems and confusions

Some oddities


- Mark uses a different step size
 - /Mokka/init/rangeCut 0.05 mm
- uses 45, 100 180 GeV Jets
 - But always LDC00Sc ..
- Weird B-Field dependence
 - My resolution decreases with higher B-Field
 - Mark : Too many curly tracks at the Z, maybe ...
- Made a run with default LDC00Sc and LDC01Sc at the Z
 - LDC00Sc : 30.4 % (Mark 29.8 %)
 - LDC01Sc : 39.5 %
 - LDC01Sc with MAPS 33.8 %

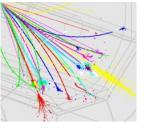

Some go at ttbar

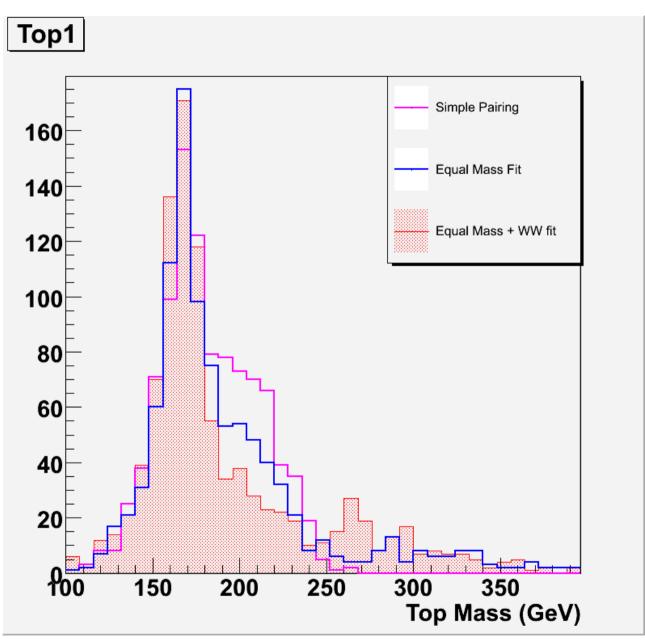
- Exercise the entire chain
 - MAPS Digi package
 - Pandora
 - Jet Cluster
- Build Analysis on LCIO reconstructed objects
 - proof of principle (it can be done)
 - prototype analysis (lots of things not optimal)
- ttbar channel is a RAL group effort (Steve, Kristian, Konstantin, Talini, Mike, Giulio, Marcel)


Marcel Stanitzki

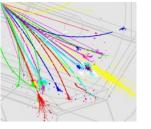
Ingredients so far

- PandoraPFA
- Jet-Clustering 6 Jets
- CDF KinFitter from the GZZ package
- To come:
 - B-tagging
 - backgrounds
 - More statistics
 - doing the same with org.lcsim

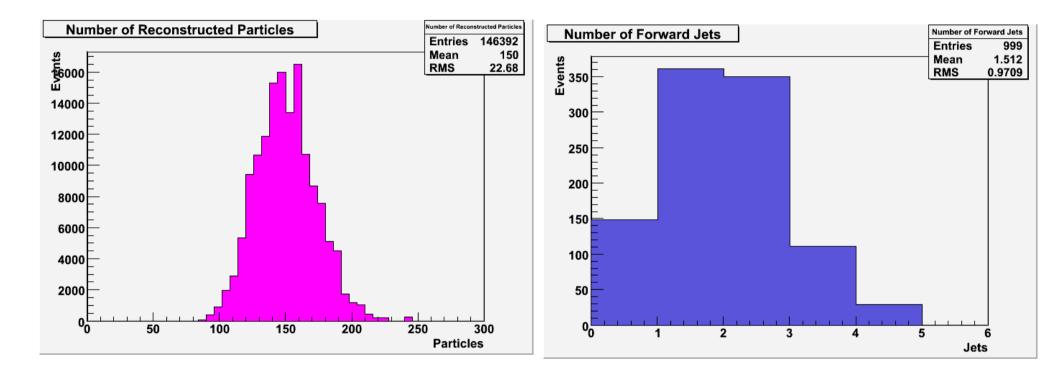


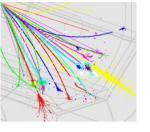

The Fitter

- Basic approach (without fitting)
 - choose parings with least mass difference
- Tevatron-Style Fitter (no beam constraint)
 - Force 3 and 3 jets to equal mass
 - Force 2 of these three to be compatible to W mass
 - pick solution with best $\chi^{\rm 2}$
 - a lot of combinations :90 per event
 - Constants and error matrices still very CDF-like, need to have ILC style errors
 - Any ILC calorimeter is a lot better than the CDF one

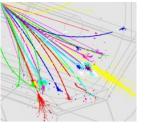


First result



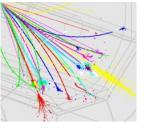

Marcel Stanitzki

A few more plots


Marcel Stanitzki

News from SiD

- I have been participating in their calorimeter meeting
 - Every second Thursday 10 pm UK
- Interesting discussions on PFA and detector optimization
 - Feeling that SiD might be a bit to small
 - People want a deeper HCAL
 - M. Breidenbach to recost a larger SiD to get a feel



PFA developments

- SiD Package going to be released soon
 - learning from LDC mistakes
 - Complete package ("Driver") with samples, constants, etc.
 - Should make it real easy to use
- Still arguing about the PFA figure of merit
 - Mark Thomson Style (Jet energy Sum)
 - Di-jet Mass resolution

PFA task force

- "Task force" formed to look into differences between
 - Detector concepts
 - Algorithms (Pandora vs. rest)
- Andy asked several people to join
 - Norm Graf (SLAC)
 - Steve McGill (ANL)
 - Ray Cowan (MIT)
 - Matthew Charles (Iowa)
 - Marcel Stanitzki (RAL)

