Calorimetry for the ILC

- ILC calorimetry focused on Particle Flow Approach (PFA)
 - Requirement of highly granular calorimeters
- ILC is different to LHC
 - Bunch spacing of 300 ns
 - 2820 bunches in 1ms
 - 199 ms quiet time
- Occupancy dominated by beam background & noise
SiW for the ECAL

• The baseline from CALICE
• Sampling Calorimeter
 - Silicon sensors embedded in tungsten sheets
• 30 layers deep
• 1.7 meters radius
• 2000 m² silicon area
• Silicon pad size 10x10 mm

Is the granularity sufficient?
Increasing the granularity

- PFA based on
 - track-shower matching
 - clear shower separation
- Granularity of 10x10 mm may not be sufficient for
 - e.g. π^0 separation
 - clearer shower separation
- Digital Pixels with 50x50 microns
 - basically a Particle Counter
 - ideal for MAPS sensors
What are MAPS?

- **Monolithic Active Pixel Sensor**
- Integration of Sensor and Readout Electronics
- Manufactured in Standard CMOS process
- Collects charge mainly by diffusion
- Development started in the mid-nineties, now a mature technology
Comparison

SiD 16mm

50 × 50 μm²

MAPS pixels

ZOOM
Sensor specifications

- 50x50 micron cell size
- Binary Readout (1 bit ADC realized as Comparator)
- 4 Diodes for Charge Collection
- Time Stamping with 13 bits (8192 bunches)
- Hit buffering for entire bunch train
- Capability to mask individual pixels
- Threshold adjustment for each pixel
- Usage of INMAPS (deep-p well) process
Sensor simulation

- Extensive Simulations using Sentaurus TCAD
- Allows to test many configurations
- Optimize Design parameters
 - Charge collection
 - Number of Diodes
 - Diode Size
 - Epilayer thickness

![Graph showing signal-to-noise ratio (S/N) vs. distance to diode (µm) with data points for 0.9 µm, 1.8 µm, and 3.6 µm diode sizes.](image)

Bias:
- n-Well 1.8/1V
- Diodes: 1.5V
The ASIC1 sensor

- Received in late July
- 0.18 microns INMAPS Process
- 168x168 Pixels
- two pixel flavors
- test structures

More details on ASIC1 and the INMAPS process in the talk by Jamie Crooks **Tuesday N16-4: 14:15**

A Novel CMOS Monolithic Active Pixel Sensor with Analog Signal Processing and 100% Fill Factor
Sensor testing

- Testing delayed by late arrival of PCB boards
- Started testing program using several set-ups
 - Laser for analog characteristics
 - Source runs
 - Cosmics
 - Test beam (December 2007)
Laser setup

- Powerful Laser setup
- 1064, 532 and 355 nm Wavelength
- Accurate focusing
- (<2 µm at longest wavelength)
- Pulse Width 4 ns
- 50 Hz Repetition rate
- Fully automatized
- Will be used to test the MAPS
The pixel test structures

- 2 pixels with analog output (A & B)
- 1 Pixel not read out (C)
- Used for
 - process characterization
 - Analog front-end testing
 - Gain calibration (to be done)
Pixel results (I)

Area scanned by Laser

ASIC1 (Jerry) Preliminary

x (µm)

y (µm)
Pixel results (II)

Area scanned by Laser
Comparison with simulations
System issues

• A Tera-Pixel ECAL is challenging

• Benefits
 – No readout chips
 – CMOS is well-know and readily available
 – Ability to make thin layers

• Current sources of concern
 – Power consumption/Cooling
 – DAQ needs
• Cooling for the ECAL is a general issue
• Power Savings due to Duty Cycle (1%)
• Target Value for baseline ECAL 4 µW/mm² (CALICE)
• Current Consumption of MAPS
• ECAL: 40 µW/mm² depending on pixel architecture
• Compared to analog pad ECAL
• Factor 1000 more Channels
• Factor 10 more power
• Advantage: Heat load is spread evenly
DAQ needs

- 10^{12} channels are a lot ...
- Physics rate is not the limiting factor
- Beam background and Noise will dominate
- Assuming 2880 bunches and 32 bits per Hit
 - 10^6 Noise hits per bunch
 - $\sim O(1000)$ Hits from Beam background per bunch
 (estimated from GuineaPIG)
- Per bunch train
 - ~ 88 Gigabit / 11 Gigabyte
 - Readout speed required 440 Gigabit/s
 - CDF SVX-II can do 144 Gigabit/s already
Power prospects

- **ASIC1 has not been optimized for power consumption**
- Proof of Concept and Technology
- Not the final product
- Options to be explored
 - Larger pixel (50 µm -> 100 µm) Factor 4 less
 - Longer integrations times if pile-up acceptable, possible factor of 2
 - Smaller feature size (~30-50 %)
 - Lowering Operating Voltages (~10%)
- **ASIC1 will allow us to explore some of these**
Summary & Outlook

• A Tera-Pixel ECAL is an interesting option for the ILC:
 - Granularity & Physics possibilities
 - Construction & Cost

• ASIC1 has been manufactured and already gives a proof of principle
 - Test beam data in December 2007

• Larger ASIC2 to be designed and submitted in June 2008