CALICE MAPS Initial Beam Test Analysis

Tim Martin, University of Birmingham 29th February 2008

Data File Used

- Using Run 490084
- o mpsBeamThresholdScan
- 1.3M BunchTrains (only used first million)
- **3 GeV e-, No W plates**
- Take Shapers on S2 & S8
- Only when Threshold=120 on BOTH -> ~ 500,000 bunch trains

Noise elimination

- Any noisy pixel can fill up it's regions 19 SRAM registers within a few thousand bunch trains.
- Kill all regions with pixels firing at a averaged rate greater than 10⁻⁴ per bunch train.

Noise map of the two sensors. Linear scale so only the very worst pixels are showing here.

Generated from 490083 run. Threshold, no beam, 252k bunch trains.

Procedure

- Look for timestamps with >1 hit
- Find all clusters in the sensor at that timestamp
- Do for second sensor
- If >0 clusters in each sensor then match the clusters to minimise separation.

2.

Find all pixels less than 6 pixels away from Seed

Remove the pixels making up this cluster and repeat until N Pixels < 2

Some Run Stats

N BUNCH TRAINS : 997,592 Useable Bunch Trains: 541,592

N Unmatched S2 Clusters: 119,765 N Unmatched S8 Clusters: 133,723

NTrackThroughs: 4,549 Average – 3.7% Cluster Match Efficiency

N Events Where Pixels Found but No Cluster in S2: 6,750 N Events Where Pixels Found but No Cluster in S8: 7,524

N Timestamps with >0 Clusters in (S2): 123,086 N Timestamps with >0 Clusters in (S2): 137,004 Cluster found a sensor in (on average) 24% of Bunch Trains

Quick noise check

- o Run 490085
- Another Threshold, no beam
- Ran analysis, 154k trains
 (82,000 useable bunch trains).
- **o** Using our noise map from run 83
- Saw total of 52 clusters in both sensors & no trackthroughs – excellent!

hThroughTrackYOffset

hThroughTrackXDifference

Cluster offset between layers peaks at (3,4) pixels with respect to Sensor 2s coordinate system.

Due to board alignment?

Magnitude of separation peaks at 3 pixels.

Small tail still present up to large separation.

Note log x scale

CentroidSeperation

hClustersPerhitS8

hClustersPerhitS2

Finding multiple clusters in a sensor at a timestamp does not appear as rare as I would have thought.

hHitsPerClusterS2

Number of pixels firing per cluster

hTimestampsWithClustersS2

Clusters appear evenly spread over all timestamps.

No evidence of SRAM buffers filling up. Dead Just Here - 11.86% Dead Both - 6.02% Alive Just Here - 20.37% Alive Both - 55.89% OutOfBounds - 5.87%

Dead Just Here - 20.36% Dead Both - 6.02% Alive Just Here - 11.86% Alive Both - 55.89% OutOfBounds - 5.87%

Conclusion

- Looking for clusters dramatically cuts down on sensor noise.
- Using a noise map practically eliminates misbehaving pixels at the expense of whole regions.
- Multiple clusters within a timestamp is not understood. Could the PMT scintillator be affecting the beam?
- Evidence of particles passing through the stack but efficiency still low.