Study of energy resolution vs energy, number of layers and sampling

A.-M. Magnan Imperial College London

21/08/2008, Calice-MAPS RAL

21/08/2008, RAL 1 / 12

イロト イポト イヨト イヨト

Outline

Opendence in number of layers

イロト 不得 とくほと くほとう

Introduction

Samples

Total is always 24 X₀:

Energy: 30 layers, 20 @ 0.6 X₀, 10 @ 1.2 X₀:

- 2500 events at 1,2,5,10,15,20 GeV,
- 1 000 events at 30,40,50 GeV,
- 500 events at 60,75,100 GeV,
- 200 events at 150 GeV, 100 events at 200 GeV.
- Number of layers: 1 000 events at 10 GeV, with N layers, 2/3N @ 0.6 × 30/N X₀, 1/3N @ 1.2 × 30/N X₀:

• N=30,28,26,24,22,20,18,16,15,14,13,12,11,10,9,8.

• Sampling: 1 000 events at 10 GeV, with 30 layers, following $20 \times a + 10 \times a \times (1 + b) = 24 X_0$:

- b = 0, a = 0.80 X₀, b = 0.5, a = 0.69 X₀,
- b = 1, a = 0.60 X₀, b = 1.5, a = 0.53 X₀,
- b = 2, $a = 0.48 X_0$, b = 2.5, $a = 0.44 X_0$.

Very simple detector: only Si and W

e $^-$ 100 GeV, 10 $ imes$ 10 $ imes$ 10 cm 3	e $^-$ 200 GeV, 10 $ imes$ 10 $ imes$ 10 cm 3

A.-M. Magnan Study of energy resolution

21/08/2008, RAL 4 / 12

10×10 cm too small ??

e^- 200 GeV, 20 imes 20 imes 20 cm³

・ロン ・ 日 ・ ・ 日 ・ ・ 日 ・

-2

Reconstructed energy and width vs generated energy

Study of energy resolution

^{21/08/2008,} RAL 6 / 12

Resolution vs E

⇒ < ⇒ >

Resolution vs $1/\sqrt{E}$

Linearity vs E

Linearity vs \sqrt{E}

▶ < ⊇ >

-2

Resolution vs N_{layers}

포 > 프

Resolution vs sampling

⇒ < ⇒ >