

Paul Dauncey

Plan for five papers?

- 1. Simulation study of generic DECAL performance
 - Response of full-size DECAL to photon showers
- 2. TPAC1.0 performance, collection of all results
 - Sensor functionality, deep P-well vs non deep P-well
- 3. Basic performance of TPAC1.2
 - Comparison of hi-res, deep P-well
- 4. MIP efficiency from CERN and DESY beam tests
 - Hi-res, deep P-well, epitaxial layer dependence
- 5. Electron shower properties at ultra-fine granularity
 - Core density measurement

1. DECAL performance

- One of the two papers stalled for a year
 - Mainly done by Anne-Marie but based on wrong noise performance
 - Targeted at NIM
- Motivation for DECAL
 - Resolution of full-sized DECAL to photons
 - Ideal resolutions and addition of realistic effects
 - Dependence on pixel size, noise, deep P-well, charge diffusion, dead areas, etc.
 - Seems hard to do PFA performance; drop
- Probably needs to be effectively redone
 - Difficult to be consistent with Anne-Marie's work
 - Should be a lot quicker now we know what to do
 - Could be done with Mokka, TPAC simulation, stand-alone GEANT4 or even one of SiD/ILD simulations
 - Which gives best information for particle counting?

Paul Dauncey

2. TPAC1.0 performance

- The other of the two papers stalled for a year
 - ⁵⁵Fe calibration misinterpretation; now understood
 - Targeted at IEEE. Reconsider; J. Inst? Sensors?
- Basic performance of design(s)
 - Pedestal, noise, uniformity, trimming, calibration with ⁵⁵Fe, diffusion time, etc.
 - Comparison of deep P-well vs non-deep P-well, also 5 vs $12\mu m$ epi
 - Use test pixels (including TPAC1.1 "old" design) and bulk
 - Compare with Sentaurus and diffusion simulations
 - Drop all beam test results (from DESY Dec 2007)
 - Include anything on sensor-to-sensor uniformity?
- Most work done; needs collection of results
 - Need to ensure consistency as taken over a long period
 - Some measurements may need to be redone

3. TPAC1.2 performance

- New paper
 - Target at same journal as TPAC1.0 performance?
- Basic performance of design
 - Similar material as for TPAC1.0 paper
 - Have more variations; deep P-well vs non-deep P-well, hi-res vs standard, 5 vs 12µm for deep P-well, 12 vs 18µm for hi-res
 - No beam test results as those appear in following papers
- Many measurements have been done
 - Again, spread over a long period so consistency is an issue
 - May need to (re)do quite a lot to cover everything
 - E.g. no bulk pixel laser results for TPAC1.2 been taken?

4. MIP efficiency

- New paper
 - Journal?
- Response of sensor to MIPS
 - Deep P-well vs non-deep P-well
 - Hi-res vs standard sensors
 - Hi-res 12 vs 18µm epitaxial layer sensors
 - Need to compare with simulation; verify response can be modelled
- CERN Aug 2009 data not sufficient and not ready
 - Data efficiency has discrepancies; needs to be understood
 - Simulation very different; needs to be understood
 - Not enough hi-res 18µm epitaxial layer data taken
 - No non-deep P-well sensor data taken
 - Need DESY Mar 2010 data; electrons so need to crosscheck against CERN pion data as well

5. Electron showers

- New paper
 - Shower physics measurement, not sensor response
- Comparison of shower densities in data and simulation
 - Electron response and core shower density
 - Results vs particle energy and vs material depth
 - The most critical result for DECAL
- Need Mar 2010 beam test at DESY
 - No tracking for electron data from CERN Aug 2009
 - Will only go up to 6GeV \otimes
 - More data would need CERN beam test; do we have the people to do this?
 - Needs good simulation agreement with MIP results

Order

- First two papers support each other
 - Realistic DECAL depends on TPAC results (noise, charge diffusion, etc)
 - Motivation for TPAC depends on DECAL results
 - Try to get them out roughly in parallel so each can reference the other
- TPAC1.2 paper needs to come out before beam test papers
 - Beam test papers need to reference the sensor design from this paper
- MIP paper needs to come out before shower density paper
 - Density measurement requires simulation to be verified