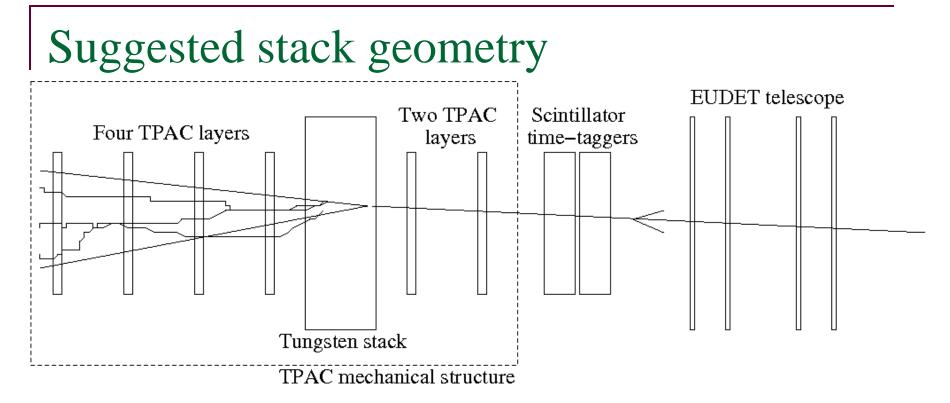
DESY beam test preparations


Paul Dauncey

Two main goals for beam test

- MIP paper
 - Find efficiency for other sensor variants which were not covered in enough detail at CERN
 - Requires that enough sensor variants are available and trimmed
 - Aim for two each of $12\mu m$ non-deep P-well, $12\mu m$ hi-res and $18\mu m$ hi-res, plus as many as possible (at least five) of standard sensors
 - All need to be trimmed, potted and checked beforehand
- Shower density paper
 - Measure electron shower response and core density
 - Requires accurate knowledge of shower centre
 - Need external tracking to find projected impact point
 - Use EUDET telescope and combine with TPAC DAQ data

Telescope interface

- EUDET trigger handed by TLU
 - Designed by Dave Cussans, Bristol
 - Can send (lowest 15 bits of) trigger number for each trigger via hardware interface; need RJ45 cable to connect to TLU
- Add interface to master USB_DAQ firmware
 - Rui Gao, Oxford, has started working on this
 - Will make a custom RJ45-IDC short cable to plug into USB_DAQ
 - Record trigger arrival timestamps and trigger numbers in FPGA
 - Also need run number; accessible through EUDET socket software
 - Read out run/trigger data along with other data following bunch train
- Associate systems offline
 - Use standard EUDET software to internally align telescope and form tracks (as being done by Alessandro Calderone at Bristol)
 - Use run/trigger data and timestamps to associate tracks with one (or a few) BX in TPAC data
- Do alignment by comparing TPAC hits to tracks; new code needed 26 Jan 2010 Paul Dauncey

- Put tungsten slabs within sensor array, not in front
 - Still allows several layers behind tungsten
 - Could be three before/three behind rather than two/four
- Initial layers give direct cross-check of telescope and make alignment easier
 - Also give backup in case telescope data cannot be interpreted
- Initial layers allow "MIP" measurements to continue even while doing shower measurements

Paul Dauncey

Triggering

- What does EUDET telescope trigger use for triggering?
 - TPAC 1×1cm² scintillators or some other, larger ones?
- Do we need to know about showers just outside the scintillators?
 - These would give tails which would look like random noise
 - Makes comparison with out-of-time BXs more complicated
 - Larger scintillators, e.g. 5×5cm², would catch these tails
- Downsides to using larger scintillators
 - Higher rate of telescope triggers so more deadtime; probably not a big issue
 - Need to buy/borrow and commission them!

Plan

- Reassemble system as used at CERN
 - Start running with any/all sensors which are trimmed as they become available
 - System should be assembled asap Marcel, Jan
 - Sensor gluing, potting and trimming Jamie, Paul
- Try out stack geometries with sensors both sides of tungsten
 - Find out what is feasible/easy
 - Do as soon as system is stable Marcel, Jan
- Add in new TPAC master firmware and TLU when Rui is ready
 - Get EUDET online software interface running also
 - Check run/trigger data look sensible offline
 - Aim for ~two weeks Rui, Paul
- Get larger scintillators for telescope trigger
 - Need HV and logic also
 - Ideally ready when interface is ready John, Nigel?

Paul Dauncey