CALICE Workpackages 2, 3and 4

Paul Dauncey

Imperial College London

1 Feb 2005 CALICE - Paul Dauncey



“Hardware” workpackages

o Strategic decision
» Want to ensure UK is positioned to take large role in calorimeters by TDR...
o ...but also believe there is enough time to be ambitious

* Hedge our bets with two major, parallel projects
» Workpackage 2 — ECAL DAQ: definitely can be done, but many interesting
ISsues remaining
» Workpackage 3 — MAPS for ECAL: no existing solution yet, but a novel
application of a maturing technology; very high profile if it comes off

* In both cases, UK would be clear leader in ILC community

 Also, smaller project to take advantage of existing UK expertise

» Workpackage 4 — ECAL thermal/mechanical issues, Manchester Atlas SCT
assembly team have the knowledge to do this

» Uses UK LHC investment to grab an important area of the ECAL
* All thiswork iswithin the CALICE collaboration umbrella
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‘ TESLA DAQ (2001)
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Workpackage 2 - DAQ
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* Three parts to the DAQ system
» On-detector: sensor/Very Front End (VFE) to Front End (FE)
» On-detector to off-detector
» Off-detector: recelver and farm

« Want to identify and study bottlenecks, not build DAQ system now!
» General |LC push towards “backplaneless’ DAQ
* (Almost) al off-detector hardware commercial; minimal customisation
» Benefits for cost, upgrades and cross-subsystem compatibility (HCAL)
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‘ DAQ — On-detector

* Wafersread out by VFE ASIC (LAL/Orsay)
» Preamplifier and shaper per channel
14 bit ADC per channel
 Buffering and/or threshold suppression?
* Number of channels per ASIC; 32-256

. . Tungsten slab r
* VFE ASIC datarates during train
o 2 bytes/channel @ 5MHz, 0.3-3GBytes/s per ASIC, 200TByte/s total ECAL

 Probably want to do some data suppression somewhere J
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iIn VFE ASIC, but...
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On-detector tasks
e Task 2.1: readout multiple VFE ASICs

» Get real experience of issues involved and FE requirement

 Feedback to new designs and redo study as new versions are produced

» Don't need large PCB; use simple board

« LAL/Orsay group highly supportive; supplying large samples of VFE chips
e Task 2.2: understand data transfer of ~GBytes/s on 1.5m PCB

e Study of transmission line performance and error recovery protocol

e Mixture of CAD modelling and bench testing

* No need to use real ASICs; connect two FPGAs on long PCB

 Protocol handling would need to be designed into VFE ASIC
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DAQ — On- to off-detector
 Constrained by minimal space at end of slab /'

* Few cm shared with cooling pipes, power cables, etc ll
» Minimise components on-detector

e Could run TCP/IP on FE FPGA and connect |
directly to network

» Bottleneck at other end of network
* Requires large memory (~GByte) at FE

e Task 2.3: Study other options for network switching

» Modelling and tests of data flow rates with ILC timing structure within small
fast-switching networks of PCs

 Performance studies of switching networks within failling/busy receivers and
transmitters

o Studies of optimal grouping of switches/PCsfor ECAL

 Evaluation of optical “layer 1" switch in terms of automatic re-routing of
data and sending data to multiple destinations
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‘ Possible network topologies
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Also need reverse direction

* Need some data going upstream, off- to on-detector

 Clock, control and configuration
* FPGA firmware

* Need to superimpose synchronised clock and control
 Preferably without dedicated custom Fast Control/Timing system

« Commercial components in network; probably asynchronous and not all
same clock speeds

 FE firmware reprogramming
* |Inaccessible for many years; like space hardware
e Must be able to reprogram firmware during experiment lifetime
* Must have failsafe system for upload so always recoverable in case of error
e Task 2.4: study aspects of these items
* Robustness of remote reprogramming; literature search and simple test bench
o Study clock and control synchronisation issues, using same test bench
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| DAQ — Off-detector

* Want to start offline reconstruction and data reduction in DAQ

 Single hit in alayer could be a MIP or noise; need multiple layersto
determine whether significant or not

* |deally, datafor each train for whole ECAL processed in asingle PC
* May not be feasible; how much of ECAL can go into one PC?

e Task 2.5: Study of off-detector receiver

« Simulate physics and background distributions to determine data reduction
efficiency for only afraction of ECAL in several PCs

» Determines network bandwidth requirement downstream

* Build test system to measure
redistic rates; test bench using Tining clock. ST
* PCI receiver card, accepting - W P
multiple fibres T man | || o |perow

Connector
* Multiple PCI cards per PC

 PCI Express multilane e
technology for PC I/O
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Workpackage 3 - MAPS Ansamy ofthe Acte P Ssor Photoiods

e Monolithic Active Pixel Sensors
» Developed over the last decade

* |ntegrates sensitive silicon detector and readout
electronics into one device

« “Cameraon achip”; al-in-one device for light
detection

 Standard CM OS technology

» PP/SS applications more recent

* Need to detect higher energy
X/gamma-rays or charged particles

 Basic principle; collection of
l = liberated charge in thin epitaxial layer
otenial parrers 1 (] L5] © Chaged pariicled just below surface readout electronics

st et X ‘ ~100%

efficiency * In UK, PPRP granted seedcorn
funding for basic development
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UK “MAPS for PP&SS’ collaboration

* Five ingtitutes; Birmingham, Glasgow, Leicester, Liverpool, RAL
e Two year programme; June 2003 — May 2005

» Many aspects of sensor devel opment
* Multiple designs per sensor for cost reasons
« Simulated and real devices studied; examples below

e | DN 5 v DN
ok ok

10 19 ”wj 10 15

SRR

A
"* G

N
e

-.""' g
4 ‘\'-t'u" l\l‘ LI
."-'-'i_'.-"""‘iff‘:*:‘a_-'.u...

TR

15
105
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4-diode structure before/after irradiation
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Application to ECAL

* First PPARC science application of MAPS seedcorn developments

» Replace diode pad wafers and VFE ASICs with MAPS wafers

» Mechanically very similar; overall design of structure identical

 DAQ very similar; FE talksto MAPS not VFE ASICs
« Both purely digital |/O, datarates similar /

* Aim for MAPS to be a“swap-in” option without impacting too much on
most other ECAL design work

* Most of Workpackages 2 and 4 applicable to both
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Advantages

* Even if MAPS identical to VFE ASIC in functionality...

 Slab thinner dueto missing VFE ASICs o
(and possibility of thinner wafers) .

E

« Improved effective Moliere radius (shower < g - Tel ? |-
* Reduced size (=cost) of detector magnet -
and outer subdetectors s |
» Thermal coupling to tungsten easier m\ - (}/ 7 3
« Most heat generated in VFE ASIC or o ¢, ,
MAPS comparators -

 Surface areato dab tungsten sheet ~1cm?

_ 6.4mm thick 4.0mm thick
for VFE ASIC, ~100cm? for final MAPS

e COST! Standard CMOS should be cheaper than high resistivity silicon
* No crystal ball for 2012 but roughly a factor of two different now
« TESLA ECAL wafer cost was 90M euros; 70% of ECAL total of 133M euros
e That assumed 3euros/cm?for 3000m? of processed silicon wafers
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But can do even better...

 Forget VFE and go to much finer pixels
» Choose size so probability of more than one particle is small
» Can then have comparator and ssimple binary readout

* How fine? EM shower core density at 500GeV 1s~100/mm

e Pixels must be < 100x100pm?; working number is 50x50um?
., 7y quality vs dist_max_heal (Ecal+Hcal)
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» Simulation shows improvement in performance
 Diode pads measure energy deposited; depends on angle, Landau, velocity
 Binary pixels measure number of particles; better estimate of shower energy
 Finer granularity also improves two-particle separation
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Pixel digital readout

 Buffer data during bunch train, readout afterwards
« Store bunch crossing number whenever signal about threshold for each pixel
* Need comparator and in-pixel memory, accessed by readout bus

e Similar to MAPS
requirements for
sensor of M 12 project

* Design including exactly
these elements being
fabricated next month

 Designer (J.Crooks) will
join CALICE

e CALICE will aso be
able to test afew of
these sensors
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Pixel analogue requirements

e Studies are needed to optimise
» Charge sharing (crosstalk), MIP SN, MIP multiple hits/pixel
» Dependent on pixel area, epitaxial thickness, threshold, diode geometry, etc

Pixel area
A

Low crosstalk /

e

Low multi-MIP probak

» Epitaxial thickness
* Noiserate target < 10° (~50) to be less than physics background
* DAQ and pattern recognition could handle (at least) ~10>

o Large parameter space; need to find best combination

* Physics-level smulation needed to guide choices
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Noise: soft vs hard reset
* Noise normally dominated by pixel reset, every bunch crossing

 Lower voltage “ soft” reset; factor of two improvement seen
* Not all charge cleared by next bunch crossing; “image lag”
* Not aproblem at ILC; Bhabharate ~1 in 500 crossings, hit ~0.1% of ECAL
o Interesting possibility; charge leaking (no reset) over severa crossings
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Signal/noise and crosstalk

 Signal/noise of > 20 measured with 3x3 pixel cluster
» Average ~50% of signal seen in central pixel
* Thin (8um) epitaxial layer; requires threshold ~0.4 signal ~4o

Liverpool
P fjm ) 10

 Pixel size only 15x15um? so crosstalk was significant
 But limited to 3x3 array ~ pixel size considered for ECAL
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Other reqguirements

* Also need to consider power, uniformity and stability

» Power must be ssmilar (or better) that VFE ASICsto be considered
e Main load from comparator; ~2.5uW/pixel when powered on
* Investigate switching comparator; may only be needed for ~10ns
« Would give averaged power of ~1nW/pixel, or 0.2W/slab
» There will be other components in addition
* VFE ASIC aiming for 100uW/channel, or 0.4W/dlab
» Unfeasible for threshold to be set per pixel
* Prefer single DAC to set a comparator level for whole sensor
* Requires sensor to be uniform enough in response of each pixel
» Possible fallback; divide sensor into e.g. four regions
 Sensor will also be temperature cycled, like VFE ASICs

 Efficiency and noise rate must be reasonably insensitive to temperature
fluctuations

* More difficult to correct binary readout downstream
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Thereisonly one task

e Task 3.1: Determine if MAPS are viable for an ECAL

» Two rounds of sensor fabrication
* First with several pixel designs, try out various ideas
» Second with uniform pixels, iterating on best design from first round

e Testing needs to be thorough
» Device-level ssimulation to guide the design and understand the results
» “Sensor” bench tests to study electrical aspects of design

 “System” bench tests to study noise vs. threshold, response to sources and
cosmics, temperature stability, uniformity, magnetic field effects, etc.

 Physics-level ssmulation to determine effects on ECAL performance
o Verification in a beam test
 Build at least one PCB of MAPS to be inserted into pre-prototype ECAL
» Replace existing diode pad layer with MAPS layer
 Direct comparison of performance of diode pads and MAPS
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Workpackage 4 — Thermal/mechanical

« ECAL isvery dense; how do we get the heat out?
* VFE islargest heat source; 100uW per channel when pulsed

e Thermal structure is complex
» Power cycling for bunch trains means heat flow is never exactly steady state
 Carbon fibre heat conductivity depends on fibre direction

* Biggest unsolved issue

» Can cooling be at edges of ECAL only (“passive’ cooling)?
Do pipes need to be brought inside the main structure (“active’ cooling)?

1 Feb 2005

 Cooling tubes ~1mm?
* Add to effective Moliere radius
* Increase ECAL size and cost
* N.B. MAPS have no VFE chip

CALICE - Paul Dauncey 24



Thermal modelling

e Manchester group have
experience in FlexPDE

* Thermal modelling of
SCT modulesfor ATLAS
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» Task 4.1: Perform thermal modelling to study issues
» Accurately measure heat output of VFE chips (and other components)

* Model both passive and active cooling structural designs, including different
active coolants and MAPS option

* Feed back results to mechanical design team

 Verify accuracy of thermal modelling by comparison with measurements on
detector slab mock-ups
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Pre-prototype PCB construction

 Diode pads attached directly to PCB using conductive glue;
ground contact to outer side of wafer using aluminium foil
 Glue deposition automated
« Wafer positioning and foil attachment done by hand
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Final assembly must be automated

* Pre-prototype PCBs have 216 channels (= blobs of glue) and six
wafers to position
« Complete ECAL requires 60 PCBs
 Each takes two days to complete; currently pacing schedule

 Final ECAL will have PCBs with ~4000 channels
o Complete ECAL requires ~5000 PCBs
* Must be industrialised and PCBs done in parallel

e Task 4.2: Study of possible glues

 Aging through thermal cycling, failure rates, glue diffusion into wafer

e Task 4.3: Automation of assembly

» Robot design to apply glue, wafers and foil over full 1.5m area

 Build prototype robot and test accuracy (glue dispensing and wafer
placement)

» Reuse some equipment and machine vision software (for alignment) from
similar Atlas work
1 Feb 2005 CALICE - Paul Dauncey
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Conclusions

* We have established the UK In ILC calorimetry

 Current CALICE programme has gone very well
* Now need the remaining funds to finish this study

* We can now place the UK in an important position in
|LC calorimetry long term

* We have done the groundwork and are ready to go

 Our strategy isto take two major paths

* Whatever the outcome of the TDR technology choices in 2009,
we can then be sure to have aleading role in the ECAL

* To do this, we need both a strong team and adequate
resources

o |f we want to be major players, we need to invest now
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‘ Radiation test. Sourceresults
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n Noise seemsto increase
slightly with dose.

n Signal decreases with
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Radiation test. Summary
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n Sensorsyield reasonable S/N up to 10 p/cm?

No efficiency measurement; need testbeam data
n 0.35 um technology in the pixel transistors. Enclosed layout in 3AMOS E
n Especialy 3AMOS E (4 diodes) looks interesting

L arger capacitance yields larger noise

Four diodes: less dependence of S/N on impact point

After irradiation remains alarger “sensitive area’
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