CALICE silicon-tungsten electromagnetic calorimeter, $1 \times 1 \, \text{cm}^2$ granularity prototype testbeam and results

G.Mavromanolakis, University of Cambridge

Outline

- **General**

- **Si/W prototype**

- **Testbeam results**
 - position resolution, tracking performance
 - response map, inhomogeneity
 - transverse containment, Moliere radius

- **Summary**
General

- "1/3" of CALICE Si/W ECAL prototype
 - 3024 channels of 1×1 cm2, 14 layers, 7.2 X_0
 - first testbeam at DESY with e^- (Jan/Feb05), a lot of data collected

- data analysis
 - comprehensive understanding and debugging of the system before the next round of testbeams
 - also pilot-reference studies to be repeated as detector grows
 - results to discuss from studies on
 - position resolution, tracking performance
 - response map, inhomogeneity
 - transverse containment, Moliere radius
 - data-simulation comparison
full Si/W prototype (24 X_0)

- 30 layers \times 18 cm \times 18 cm, interleaved with 0.5 mm Si pads
- W absorber, 10+10+10 layers, 1.4 mm:2.8 mm:4.2 mm thick per respective layer
- readout by 1×1 cm2 cells, total: 9720 channels
Calibration with cosmics

A typical channel: gaussian noise, landau signal
Cosmics

Run 1104860743 Event 133

Record Time = 17:47:59.737785 Tue Jan 4 2005, Type = 5 = event
DaoEvent::print() Event numbers in run 0, in configuration 0, in spill 0
Calibration with cosmics

- 2160 channels
 - mean = 48.4
 - $\frac{\text{sigma}}{\text{mean}} = 3.5\%$

- 2160 channels
 - mean = 8.2
 - $\frac{\text{sigma}}{\text{mean}} = 6.2\%$

- 10 layers (2160 channels) calibrated with cosmics (1 Mevents)
 (LLR-Paris, Dec04)

G. Mavromanolakis, LCWS2006, Bangalore
CALICE-ECAL testbeam at DESY

- "30%" equipped Si/W prototype
 - i.e. 14 W layers (10 at 1.4mm + 4 at 2.8mm) interleaved with 18 × 12 matrix of active Si cells, **cellsize: 1 × 1 cm²**, total: 3024 channels
 - first testbeam at DESY with electrons during Jan/Feb05

- **in summary (configurations: position × energy × angle)**
 - position scan (center - edge - corner of wafers)
 - energy scan (mainly 1, 2, 3 GeV, some runs at 4, 5, 6 GeV)
 - angle scan (0°, 10°, 20°, 30°)
 - total: ~ 25 Mevents (~ 230 GB)
CALICE-ECAL testbeam at DESY

ECAL

3x2 wafer matrix

fans

cables to DAQ

XY table

layout at DESY T21

DriftChambers and installation courtesy of Tsukuba Univ. and Kobe Univ.

G.Mavromanolakis, LCWS2006, Bangalore
"Response" vs cell threshold

- safe limit a threshold around 0.5 - 0.6 mip
- following analysis with threshold = 0.5 mip
"Tracking Calorimetry"

(not to scale)

e\(^{-}\) 1 GeV

cell threshold = 0.2 mip
"Tracking Calorimetry"

(not to scale)

e- 1 \text{ GeV}

cell threshold = 0.5 mip
"Tracking Calorimetry"

(not to scale)

e^{-} 2 GeV

cell threshold = 0.5 mip
"Tracking Calorimetry"

(Not to scale)

$e^- \ 3 \text{ GeV}$

cell threshold = 0.5 mip
Shower longitudinal profile

- shower maximum is contained
- odd/even asymmetry of construction observed
- showers better contained at 30°
Tracking - Residuals

ShowerX, Y from barycenter in ecal
TrackX, Y from 4 drift chambers
Position resolution

Residual RMS as a function of the number of ecal layers used

ECAL $0^\circ (7.2 \, X_0)$ e$^-$ 1 GeV

ECAL $0^\circ (7.2 \, X_0)$ e$^-$ 2 GeV

ECAL $0^\circ (7.2 \, X_0)$ e$^-$ 3 GeV

Residual RMS (mm)

Number of layers used

0 2 4 6 8 10 12 14

along X

along Y
Position resolution

ECAL 0° (7.2 X_0)

- Highly granular ECAL → excellent position resolution
Position resolution - undersampling

- do tracking by using only hits from every 2nd layer

- to investigate the tracking performance of an ecal with 5 layers \times 2.8 mm W (instead of 10 layers \times 1.4 mm W)

- expect position resolution to degrade by factor $\frac{\sigma_5}{\sigma_{10}} \approx \frac{\sqrt{10}}{\sqrt{5}}$

G. Mavromanolakis, LCWS2006, Bangalore
Response map - center of wafer

ECAL 0° (7.2 X₀) e⁻ 1 GeV

ECAL 0° (7.2 X₀) e⁻ 2 GeV

ECAL 0° (7.2 X₀) e⁻ 3 GeV

G. Mavromanolakis, LCWS2006, Bangalore
Response Inhomogeneity

- e⁻ 1 GeV: \(\sigma_{\text{mean}} = 5.6\% \)
- e⁻ 2 GeV: \(\sigma_{\text{mean}} = 4.8\% \)
- e⁻ 3 GeV: \(\sigma_{\text{mean}} = 5.1\% \)

Response Inhomogeneity along 40 × 40 mm² (Binsize: 1 × 1 mm²)

> response variation around the center of wafer
Response map - center/edge/corner of wafer
Wafer border

Non-active Zone ~ 1 mm

(C.LoBianco, LC-DET-2004-007)
Position scan along wafer borders

- **TrackX (mm)**
 - Values: -20, -15, -10, -5, 0, 5, 10, 15, 20

- **TrackY (mm)**
 - Values: -20, -15, -10, -5, 0, 5, 10, 15, 20

- **EventEnergy (normalised)**
 - Values: 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2

ECAL 0° (7.2 X₀) e⁻ 1 GeV

Note:
- alternate layers staggered along X (by 2.5 mm)
- dip is shallower and wider
- layers not staggered along Y
- dip is deeper and narrower

G.Mavromanolakis, LCWS2006, Bangalore
Response Inhomogeneity

- Response Inhomogeneity along 40 x 40 mm² (Binsize: 1 x 1 mm²)
 - Center
 - \(\sigma\) mean = 5.6%
 - Mean = 175.1
 - Edge
 - \(\sigma\) mean = 7.3%
 - Mean = 171.3
 - Corner
 - \(\sigma\) mean = 9.7%
 - Mean = 162.2

- Response variation around the center/edge/corner of wafer

G. Mavromanolakis, LCWS2006, Bangalore
Transverse containment (Moliere radius)

\[\text{Energy Contained (\%)} \]

\[\begin{array}{c|c|c|c|c|c|c|c|c|c|c|c} \hline \text{Radius (mm)} & 0 & 10 & 20 & 30 & 40 & 50 & 60 & 70 & 80 & 90 & 100 \\ \hline \text{Energy Contained (\%)} & 90 & 91 & 92 & 93 & 94 & 95 & 96 & 97 & 98 & 99 & 100 \\ \end{array} \]

1 GeV \(e^- \), 2 GeV \(e^- \), 3 GeV \(e^- \)

\(\text{ECAL} \ 0^\circ (7.2 X_0) \)

\(\text{DATA} 7.2 X_0 \)

\(\text{SIM} 7.2 X_0 \)

\(\text{SIM} 24 X_0 \)

\(\text{data-simulation comparison} \)

\(\text{results expected for the 24} \ X_0 \text{ prototype} \)

\(\text{e.g. 1 GeV} \ e^- \text{ shower "contained" at} \)

\(\begin{array}{l|l} \text{90\%} & \text{within radius 16 mm} \\ \text{95\%} & \text{23 mm} \\ \text{99\%} & \text{50 mm} \end{array} \)

\(\text{REMINDER:} \)

\(\text{for an infinitely long and wide calorimeter} \)

\(\text{shower contained at} \)

\(\begin{array}{l|l} \text{90\%} & \text{within radius} \sim 1 R_M \\ \text{95\%} & \text{2} R_M \\ \text{99\%} & \text{3.5} R_M \\ \end{array} \)

(for solid \(W \), \(R_M \approx 10 \text{ mm} \))

G.Mavromanolakis, LCWS2006, Bangalore
Reminder (High Granularity Calorimetry)

- "particle flow paradigm" requires
 - highly granular EM and HADR calorimeters to allow very efficient pattern recognition for excellent shower separation and pid within jets to provide excellent jet reconstruction efficiency
 - strong interplay between hardware and software

- CALICE roadmap (concepts+questions → answers and optimal design)
 - build ECAL and HCAL prototypes and do extensive individual and combined testbeam studies
 - demonstrate proof of technology/detector concept(s)
 - debug-characterise-optimise detector performance
 - test-validate-improve simulation codes and shower packages
Data-simulation comparison (energy per hit)

(studies by D.Ward)

▷ good agreement between data and simulation
▷ G4.8.0 improved wrt G4.7.1
Data-simulation comparison (shower profile)

(studies by D. Ward)

- Good agreement between data and simulation
- G4.8.0 improved wrt G4.7.1

![Graph showing #of hits vs distance(mm) from shower barycenter](image1)

![Graph showing energy vs distance(mm) from shower barycenter](image2)
Summary

• "1/3" of CALICE Si/W ECAL prototype

 : 3024 channels of $1 \times 1 \text{ cm}^2$, 7.2 X_0, 14 layers

 : first testbeam at DESY with e^- (Jan/Feb05)

 : results shown from studies on
 ▸ position resolution, tracking performance
 ▸ response map, inhomogeneity
 ▸ transverse containment, Moliere radius

 : further data analysis in progress

• next steps

 : testbeams at DESY and at CERN with ECAL completed
 and in combination with HCAL

 : see also talks from G.Gaycken(ECAL) and F.Sefkow(HCAL)
BACKUP SLIDES
ECAL board

6 active wafers
- 36 silicon PIN diodes each → 216 channels per board.
- Diode size: $1 \times 1\,\text{cm}^2$.

Calibration chips
- 2 calibration switches chips.
- 6 calibration channels per chip.
- 18 diodes per calibration channel.

Front-End chip
- 12 FLC-PHY3 front-end chip
 - 18 channels / chip
 - 13 bit dynamic range

Line buffers
- To DAQ part
- Differential.

PCB:
- 14 layers
- 2.1 mm thick
- Made in Korea

(G.Gaycken)
CALICE readout card

- Calice Readout Card (CRC) VME board
 - Modified CMS silicon tracker readout board
 - Does VFE PCB control, digitisation and data buffering
 - Also does trigger control

Diagram showing Virtex-II FPGAs, 16-bit dual ADCs, and 8MByte buffer.

G.Mavromanolakis, LCWS2006, Bangalore
General

► particle flow paradigm
 - highly granular EM and HADR calorimeters to allow very efficient pattern recognition for excellent shower separation and pid within jets to provide excellent jet reconstruction efficiency

► CALICE ECAL(Si/W) and HCAL(Scint/Fe, RPC/Fe) prototype studies
 - debug technology/detector concept(s)
 - detector characterisation
 - test "particle flow paradigm", interplay between hard/soft-ware
 - test-validate-improve simulation codes and shower packages

► details about CALICE Si/W ECAL prototype follow
"Response" to electrons

- no weighting, no event selection, no tracking
- showers better contained at 30°
no weighting, no event selection, no tracking

\(dx = \text{CellX} - \text{BarycenterX} \)

distance between peaks = 1 cm = transverse granularity
Position scan

ShowerX,Y from barycenter in ecal
TrackX,Y from 4 drift chambers
Position scan - center of wafer

ECAL 0° (7.2 X₀) e⁻ 1 GeV

BinWidth: 2e-02
Position scan - center of wafer

ECAL $0^\circ (7.2 \, X_0)$ \(e^- \, 1 \, \text{GeV}\)

Event Energy per mm (au)

BinWidth: 1e-01

Track X (cm)

Track Y (cm)

PRELIMINARY
Position scan - edge of wafer

ECAL 0° (7.2 X_0) e^- 1 GeV

BinWidth: 2e-02
Position scan - edge of wafer

ECAL 0° (7.2 X_0) e⁻ 1 GeV

PRELIMINARY
Position scan - corner of wafer

ECAL 0° (7.2 X₀) e⁻ 1 GeV

BinWidth: 2e-02
Position scan - corner of wafer

ECAL 0° (7.2 X₀) e⁻ 1 GeV

- alternate layers staggered along X
- dip is shallower and wider

- layers not staggered along Y
- dip is deeper and narrower

PRELIMINARY
Transverse containment (Moliere radius)

Data-simulation comparison

- Results expected for the 24 X_0 ecal prototype
Transverse containment (Moliere radius)

\[\text{Energy Contained} (\%) \]

\[\begin{array}{c|c|c|c|c|c|c|c|c|c|c|c|c}
0 & 10 & 20 & 30 & 40 & 50 & 60 & 70 & 80 & 90 & 100 \\
\hline
90 & 91 & 92 & 93 & 94 & 95 & 96 & 97 & 98 & 99 & 100 \\
\end{array} \]

\[\text{Radius (mm)} \]

\[\text{ECAL } 0^\circ (7.2 \times 7) \]

- e^− 1 GeV
- e^− 2 GeV
- e^− 3 GeV

\[\text{Energy Contained} (\%) \]

\[\begin{array}{c|c|c|c|c|c|c|c|c|c|c|c}
0 & 10 & 20 & 30 & 40 & 50 & 60 & 70 & 80 & 90 & 100 \\
\hline
90 & 91 & 92 & 93 & 94 & 95 & 96 & 97 & 98 & 99 & 100 \\
\end{array} \]

\[\text{Radius (mm)} \]

\[\text{ECAL } 0^\circ (7.2 \times 7) \]

- center
- edge
- corner

\[\text{slight degradation if impact is along edge/corner of wafer} \]

\[\text{e.g. } 1 \text{ GeV } e^- \text{ shower "contained" at} \]

\[\begin{array}{c|c|c|c}
: 90\% & \text{within radius } 16 \text{ mm} \\
: 95\% & 23 \text{ mm} \\
: 99\% & 50 \text{ mm} \\
\end{array} \]

REMINDER: for an infinitely long and wide calorimeter

<table>
<thead>
<tr>
<th>shower contained at</th>
<th>90%</th>
<th>within radius</th>
<th>95%</th>
<th>~ 1 (R_M)</th>
<th>99%</th>
<th>~ 2 (R_M)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(for solid W, (R_M \approx 10 \text{ mm}))</td>
<td></td>
<td></td>
<td></td>
<td>(\approx 3.5 \text{ } R_M)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

G. Mavromanolakis, LCWS2006, Bangalore