WWS Calorimetry R&D Review: Overview of CALICE

Paul Dauncey, Imperial College London

The CALICE Collaboration

- CALICE is undertaking a major program of calorimetry R&D
 - More than 200 people, 41 institutes, all 3 ILC regions
- The work is directed towards calorimetry optimised for:
 - Particle flow algorithms (PFA)
 - Software compensation (mainly)
 - We consider this the most promising approach
- This choice sets the basics of the calorimeters
 - Requires separation of hadronic jets into individual particle components
 - Optimised calorimetry will have high granularity in transverse and longitudinal directions
 - Need to consider ECAL, HCAL and (outside the solenoid) the "tail catcher" (TCMT) together as an integrated system

CALICE goals

- The aim is to find the "best" calorimeter to deliver the ILC physics requirements
 - Where "best" is in a performance/cost/operability multi-dimension space
 - The space metric is not yet defined; all these variables need to be studied
- The work is not for any specific detector concept group
 - The "best" may be different for each concept
 - Many CALICE members are members of concept groups
 - Our results will be relevant to all groups
 - We have given talks to all three concept groups interested in PFA
 - This is likely to increase now we have beam test results
- Given the limited ILC R&D resources worldwide, we consider it important to make the findings of such a large amount of R&D available to all parts of the ILC community

Simulation uncertainties

- We would like to design optimised calorimeters right now
 - Using simulation of full ILC detectors with physics benchmark channels
 - But simulations of hadronic interactions have significant uncertainties

- An issue for any design optimised using simulation
 - Must compare simulation to real data and find most usable model(s)
 - Must be done with calorimeters close in material terms to proposals

Two major R&D efforts

- Physics prototypes; aims are
 - Use similar converter and sensitive layer technology to proposed calorimeters
 - High statistics beam test data to do detailed comparison with simulation models
 - Get experience of operation and performance
 - Keep as much as possible in common to ease comparison of technologies and reduce R&D cost
- Technical prototypes; aims are
 - Use similar sensitive layer technology, mechanics, readout electronics, cooling, DAQ, etc, to proposed calorimeters
 - Get experience of integration and technical issues of building a full-size, ILC-like module; many such issues are independent of a specific detector concept
 - Run in beam test to understand operation and performance of full module
 - Keep as much as possible in common to ease comparison of technologies and reduce R&D cost
- Outcome will be a reliable simulation and the required information on cost, performance and operational issues
 - This will allow us to proceed with the calorimeter optimisation

Physics prototypes

- Compare two ECALs
 - Silicon-tungsten; analogue diode pads
 - Scintillator-tungsten; analogue, ±WSF, MPPC

Compare two HCALs (plus variants)

- Scintillator-steel; analogue, WSF, SiPM
- Gas-steel; digital, RPCs/GEMs/Micromegas

- Measure performance of TCMT
 - Scintillator-steel; analogue, WSF, **SiPM**

LCWS R&D Review - Overview

Physics prototype common readout

- On-detector readout board
 - Used for all SiPM detectors

- VME readout electronics common in all beam tests so far
 - VME custom boards adaptable to different channel counts

- Online DAQ software system common to all
 - Single format for raw data output
- Offline event reconstruction and analysis format common to all
 - Conversion to LCIO and reconstruction all centralised
 - Grid tools widely used for ease of data distribution and handling over widely dispersed collaboration

Physics prototype common mechanics

• Movable stage

- Holds HCAL converter planes and ECAL
- Manual and computer 3D motion control
- Allows scan of beam over calorimeter surface for studies of cracks, etc.

• Converter stack; 38 steel layers

- Usable by scintillator and all gas HCALs
- Removes material difference uncertainty in HCAL comparisons

Technological prototype common items

- On-detector readout ASICs; second-generation, ILC-like
 - Being designed with common concept for downstream DAQ

- DAQ and online system
 - Common to all detectors
 - Crateless, non-custom, ILC-like system with readout directly into PCs
 - System-dependences isolated to single interface (LDA-DIF)
- Offline software
 - Again, common and based on LCIO, Grid

The usual questions

- Electromagnetic simulations are accurate; why test ECAL?
 - PFA needs an integrated calorimeter
 - Study performance and operation of ECAL
 - 1/3 of hadronic showers start in the ECAL
- Gas HCALs have a long history; why is R&D needed?
 - Large differences seen in simulation of both scintillator and gas HCALs
 - Recent advances in RPCs; not a matured technology
 - Fine granularity, digital RPCs not used on large scale; PFAs are a new twist
 - GEMs and micromegas are novel for calorimetry
- Muon chambers are "easy"; why test TCMT?
 - Main function is tail catcher rather than muon tagger
 - Exploring and measuring tails is part of calorimeter optimisation
 - Test of application of AHCAL technology to different detector

Stay tuned...

- The following talks will cover all aspects of the CALICE program in more detail
- Physics and/or technical prototypes for each technology
 - Status, results, performance and schedule for each
- Common items used across all technology prototypes
 - Readout electronics
 - Off-detector DAQ and software
- Physics prototype test beam
 - Installation and run performance
 - Preliminary results and comparisons with simulation
- And then...

I'll be back