

- Aim to develop a generic system
 - Maximise use of off-the-shelf commercial components
 - Reduce as far as possible the need for bespoke solutions
 - Clearly some custom electronics will be needed at the very front end to control and read-out of sub-detectors
 - Provide well defined interfaces between DAQ components to allow for simple upgrading or replacement in future without major re-design or cost

- What do we need to provide?
 - Triggerless operation
 - Delivery of clock and control to front end
 - Enough bandwidth to read out (potentially) the whole detector without hitting performance bottlenecks
 - Redundancy in case of DAQ system component failures

Possible Architecture

- Classic funnel
 - Front end read out into on (or very near) detector data concentrator
 - Concentrator buffers, frames and transmits data over high-bandwidth links to off detector receivers
 - Off detector data unpacking, filtering and storage

Prototype

EUDET DAQ

- Control interface to front-end electronics on component specific Detector InterFace (DIF) board
- On/Near detector concentrator (LDA)
 - Clock and control master for DIF
 - Direct input from machine clock or provided from ODR
 - Link/cost implications
- Off Detector Receiver currently implemented as PCI express card in a PC
 - Consider other technologies such as ATCA as they mature
 - Also may be able to convert directly to network protocols on ODR and assemble complete events in a virtual, network based event builder

Very Front and Front End System

- On-detector test system
 - Investigate data integrity over long PCBs
 - Eventually 7 modules will be stitched together
 - FPGAs used to simulate ASICs
 - Allows testing of layout, data rates, protocols and signalling schemes
 - Commercial Xilinx development board used to prototype DIF
 - Onboard USB and 10/100 Ethernet for control and data link testing

Off Detector Systems

Prototype ODR

- Implemented on Virtex 4 development boards supplied by PLDApplications
 - Onboard PCI-express
 interface
 - Large Virtex 4 FPGA
 - DDR2 memory
 - 2 SFP opto/copper link interfaces
- 1 Gbit/s Ethernet integrated as part of design to simplify initial testing
 - Also allows card to be used as network packet generator

David Bailey

ODR Prototype

Status

- Initial firmware complete
- Host PC driver working
- Investigating data rate throughput to local disks
 - Reasonable rates already achieved with first iteration
- Bottom line
 - We have a working ODR prototype

Calorimeter for

LDA, DIF and Redundancy

- Highly desirable to have option for DIFs connected to separate LDAs to have redundant data and clock path
 - Failover in case of link failure
 - Vital as master clock to front end is provided by/derived from LDA
 - Current ideas use pairs of DIFs, but could easily extend to a token ring system if needed
 - Envisage a rather simple system for test beams
- LDA-DIF physical link technology under discussion
 - Needs to be synchronous with machine clock and of fixed latency
 - Beam on/off signals for power pulsed modes of operation
 - External triggering
- Have an initial specification for the physical interface to the DIF which is completely independent of link/clock technology

In - Out - Clk -

Simple IDC connector with

LVDS signals and power

David Bailey

0V

0V

Networking

- Using FPGA for network protocol and topology tests
 - ODR board used as data source and sink directly on network
 - Use for testing Raw Ethernet Frame generation by the FPGA
 - Test Data collection with Request-Response protocols
- FPGA easily drives 1Gigabit Ethernet at line rate
 - Packet dynamics on the wire as expected
 - Loss of Raw Ethernet frames in end host being investigated
- Request-Response style data collection promising
 - Developing a simple Network test system
- Planned upgrade to operate at 10Gbit/s

Details in proceedings of IEEE Realtime 2007 Wokshop at Fermilab, May 2007

David Bailey

FPGA Robustness

- ASICs and FPGAs embedded in detector
 - Need to assess robustness against single event upsets induced by showers
 - Simulate various processes and estimate upset rate
 - See V. Bartsch's talk in the DAQ parallel for details

FPGA	threshold	SEU σ	SEUs/day
	[MeV]	[cm ² /device]	
Virtex II X-2V100 & Virtex II X-2V6000	5MeV	8*10 ⁻⁹	0.17
Altera Stratix	10MeV	10 ⁻⁷	1.99
Xilinx XC4036XLA	20MeV	3*10 ⁻⁹	0.02
Virtex XQVR300	10MeV	2*10 ⁻⁸	0.38
9804RP	20MeV	10 ⁻⁸	0.17

all data from literature, references not given in talk

- Looks like FPGAs need to be reconfigured once a day
- Before operation, radiation tests need to be done with FPGAs chosen for experiment

DAQ Software

- Hardware is not the only story
 - Need control software to integrate with the rest of the testbeam/experiment
 - Need event builder software to merge bunch train data from disparate sources into complete single event data
 - See R. Poeschl's talk in the DAQ parallel for details

Conclusions

DAQ Development very active

- Clearly this is not the final ILC system!
 - At least 5 years away...
 - Aiming to test and evaluate commercial systems as much as possible
- Deliver a common prototype system as part of EUDET
 - Serious tests of off-the-shelf components and technology
 - First prototypes of some systems are already working
- Need to plan for test of single event upsets in FPGAs in realistic conditions
- DAQ control software development beginning
- Would love to engage with people beyond the calorimetry community to exploit synergies and understand other's requirements