

CALICE Si-W EM calorimeter Preliminary Results of the testbeams 2006 1st part

Anne-Marie Magnan Imperial College London

On behalf of the CALICE Collaboration

Why doing testbeam

• Calorimetry for ILC: mostly driven by Particle Flow performance to achieve

- Optimum design addressed by MC simulation
 → Need to validate the simulation against a realistic detector !
- And it allows to discover design/hardware issues in time to solve them.

June 1st, 2007

Layout

Introduction: the ECAL prototype

- I. the testbeam setups
- II. Calibration procedure
- III. Pedestal and noise and crosstalk issues
- IV. Electron selection for the analyses
- V. Tracking resolution at ECAL front face Conclusion

- •3 modules with variable thickness of Tungsten
- •Active slabs with silicon layers+tungsten interleaved
- Front end chip and readout on PCB board

June 1st, 2007

6

E

9

June 1st, 2007

	DESY TB area, with only 24 layers . 14 days in tota ~8 Million triggers, 7 energies (1-6 GeV), 5 angles,					
Angle	0° (k events)	10 ° (k events)	20 ° (k events)	30° (k events)	45° (k events)	
6 GeV	594	688	200	185	200	
5 GeV	304	300	200	325	200	-
4 GeV	400	224	200	300	200	
3 GeV	304	200	200	324	200	
2 GeV	400	200	200	300	200	
1.5 GeV	486	200	200	300	200	
1 GeV	400	300	345	200	200	
Total	2888	2112	1545	1934	1400	

Testbeam setup in DESY

Testbeam setup in CERN - August

Testbeam setup in CERN - August

June 1st, 2007

Testbeam setup in CERN - August

June 1st, 2007

Testbeam setup in CERN - October

Summary of the data taken

Size on disk: ~ 40 kB/evt \rightarrow 65M events = 2.5 TB for CERN Physics runs \rightarrow + 70 M = 3 TB for muon calibration runs LCWS 2007 ----- Hamburg ----- A.-M. Magnan (IC London)

II- ECAL calibration

- Using muon runs taken in October: ~18M events
- Taken with another experiment upstream **→** wide spread muon beam
- Procedure:
 - reject noise with a fixed cut at 25 ADC counts (~0.5MIP)
 - selection of MIP-like tracks : $15 \le N_{hits} \le 40$, in a 2 cm tower
 - fit with a Landau convoluted with a Gaussian

III- Pedestal, noise and crosstalk issues 1- Square events : crosstalk with guard ring

- "Square events"
 - cross talk between guard rings and pixels

A Good PCB

2- Pedestal instabilities

Ex: Muon run (ECAL threshold : 0.5 MIP)

2- Pedestal instabilities

A Good PCB Ex: Muon run (ECAL threshold : 0.5 MIP) 60 HANNAR Module 22, 40 20 Time: 13:36:24:033:166 Mon Oct 30 2006 Run 300960:0 Event 1060 Hits: 244 Energy: 226.062 mips -20 -40 -60 → NEW !! Understood : fake differential in 20000 the chip due to instabilities of the power supply not compensated. Is corrected A PCB with u in the EUDET module (SKIROC chip) 20 Module -20 -40 -60 -80 -100 -120 50000 60000 70000 40000 10000 20000 30000 Event Number

June 1st, 2007

The effect

1- Pedestal substracted signal of all pads of one PCB

The effect

June 1st, 2007

June 1st, 2007

LCWS 2007 ----- Hamburg ----- A.-M. Magnan (IC London)

1.381e+04

Mean

25000

30000

-73.97

5444

31.52

PCB layer 9 in 6 GeV e- run (DESY) Wafers of the middle row before any corrections

Correlation between 2 channels, per wafer.

0% 50%

80%

Noise after all corrections

Extracted from 11 runs at different energies

IV- Electron selection

- Triggering : coincidence of 3 scintillators along the beam line.
- Signal threshold: 0.6 MIP
- Selection of single electron events:

$$125 \times E_{beam} < E_{tot} \left(= \sum_{l=1}^{10} E_l + 2 \times \sum_{l=11}^{20} E_l + 3 \times \sum_{l=21}^{30} E_l \right) / MIP < 375 \times E_{beam}$$

- CERN: Čerenkov counter to remove pion contamination
- DESY : shower barycentre in the region expected from the beam profile.

Data/MC comparison

- High energy tails very well reproduced, also up to 1.5 MIP
- Low energy disagreement not yet understood, under investigation
- But little influence on the total energy

Pion 12 GeV not

5

6

3

 \rightarrow present analyses based on the energy.

E Ecal hits /mips <u>×1</u>0³

250

200

150

100

50

V- Tracking performances @ ECAL front face

- <u>In view of extracting the</u> <u>ECAL resolution, need to</u> <u>substract the tracking</u> <u>resolution</u>
- Tracking: best linear fit with 4 chambers is considered to give the expected position and direction at ECAL front face.
- Error matrix contains intrinsic chambers resolution and scattering in front of the ECAL.
- Systematic errors in extrapolation to ECAL front face directly affects ECAL performance:

For 1 GeV Beam Energy - DESY					
Source of error	Position (mm)	On Angle (mrad)			
Simulation statistic	0.02	0.02			
residual misalignment	0.16	0.02			
material modelling	0.13	0.23			
Intrinsic resolution	0.05	0.03			
Background rate	0.05	0.14			
total	0.22	0.27			

June 1st, 2007

Calorimeter for

Results for the tracking resolution

Track resolutions in x @ ECAL front face					
Ebeam	Position (mm)	Angle (mrad)			
1 GeV	1.68 ± 0.22	2.48 ± 0.27			
2 GeV	1.00 ± 0.12	1.34 ± 0.13			
3 GeV	0.81 ± 0.09	0.92 ± 0.09			
4 GeV	0.72 ± 0.07	0.73 ± 0.07			
5 GeV	0.66 ± 0.06	0.62 ± 0.06			
6 GeV	0.60 ± 0.06	0.53 ± 0.05			

June 1st, 2007

Introduction's conclusions

- Testbeams 2006 have been a complete success:
 - discovery of hardware problems:
 - capacitance issues giving raise to so-called "square events",
 - Importance of compensating power supplies for the stability of pedestal lines,
 - ... and more to come ! Crosstalk issue affecting pedestals at wafer scale ??
 - exercise real life detectors and data handling: e.g. GRID setup, reconstruction software, simulation and digitisation issues.
 - allowed to improve already the detector simulation models.
 - Lots of data taken, with a full spectrum in energy, angle, position
- Really good training for coming testbeam with a completed prototype : summer 2007, starting in 3 weeks.
 - learning from our mistakes : even more efficient shift organisation + faster analyses and feedback expected.
- Preliminary results on performance presented by C. Carloganu right now !

Thank you for your attention

June 1st, 2007

Backup

June 1st, 2007

LCWS 2007 ----- Hamburg ----- A.-M. Magnan (IC London)

42

Detailed view of ECAL PCB

ECAL board

June 1st, 2007

noise after corrections

June 1st, 2007