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∆E/E = 60%/√E∆E/E = 60%/√E ∆E/E = 30%/√E∆E/E = 30%/√E

Equivalent best LEP detector Goal at ILC

� Essential to reconstruct jet-jet invariant masses in hadronic final 

states, e.g. separation of ννννννννW+W−−−−, ννννννννZ0Z0, tth, Zhh, ννννννννH

ILC: high performance calorimetryILC: high performance calorimetryILC: high performance calorimetry

� LEP/SLD: optimal jet reconstruction by energy flow

� Explicit association of tracks/clusters

� Replace poor calorimeter measurements with tracker
measurements – no “double counting”

Little benefit from beam energy constraint, cf. LEP
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� Shower containment in ECAL, ΣΣΣΣ X0 large

� Small Rmoliere and X0 – compact and narrow showers

� λλλλint/X0 large, ∴∴∴∴ EM showers early, hadronic showers late

� ECAL, HCAL inside coil

� Lateral separation of neutral/charged particles/’particle flow’

� Strong B field to suppresses large beam-related background in detector

� Compact ECAL (cost of coil)

� Tungsten passive absorber

� Silicon pixel readout, minimal interlayer gaps, stability – but expensive…

� Develop “swap-in” alternatives to baseline Si diode designs in ILD (+SiD)
� e.g. MAPS

ECAL design principlesECAL design principlesECAL design principles
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CALICE: from MC to reality to MCCALICE: from MC to CALICE: from MC to reality to MCreality to MC

Initial task

Build prototype calorimeters to
• Establish viable technologies
• Collect hadronic shower data with 
unprecedented granularity

• tune reconstruction algorithms
• validate existing MC models

Ultimate goal

High granularity calorimeter 
optimised for the Particle Flow
measurement of multi-jet final state 
at the International Linear Collider

CAlorimeter for the LInear Collider Experiment

Scint. Strips-Fe TCMT

“Imaging
Calorimeter”

Next task

Exploit validated models for whole
detector optimisation

Next task

Exploit validated models for whole
detector optimisation
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Test beam prototypesTestTest beam prototypesbeam prototypes

1x1cm2 lateral segmentation
~1 X0 longitudinal segment.
~1λ total material, ~24 X0

3x3cm2 tiles lateral
segmentation
~4.5 λ in 38 layers

5x100cm2 strips
~5 λ in 16 layer

10 GeV pion shower  
@ CERN test beam

10 GeV pion shower  
@ CERN test beam

SiW ECALSiW ECAL Scint-Fe HCALScint-Fe HCAL
Scint-Fe tail catcher/
muon tracker

Scint-Fe tail catcher/
muon tracker

beam
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The 2006 CERN installationThe The 2006 CERN2006 CERN installationinstallation

HCAL

Tail Catcher

ECAL

beam AHCAL layer with
high granular core 
readout

AHCAL layer with
high granular core 
readout
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Reality: ECAL linearity/resolution Reality: ECAL linearity/resolution Reality: ECAL linearity/resolution 
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Non-linearities ~1%Non-linearities ~1%
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∆E/E
=17.13/√(E/GeV)⊕0.54%

A priori and optimised
weightings

2006 data
(LCWS’07 vintage)

2006 data
(LCWS’07 vintage)
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CALICE testbeam outlook to dateCALICE testbeam outlook to dateCALICE testbeam outlook to date

� Integrated approach to develop optimal calorimety, not just HCAL

� Complete understanding of 2006-7 data
� Adding yet more realism to testbeam model (material, 

instrumented regions, etc.)
� Understanding beamline – characterisation of beam itself 

empirically, or by modelling ~accelerator-style the transport 
line (BDSIM et al?)

� Include experience with modelling test beam prototypes into 
uncertainties in “whole detector” concept models

� Detailed study of hadronic shower substructure
� Separation of neutrons, e.m., hadronic components, mip-like, …. 

– “deep analysis”

� Data will reduce interaction modelling uncertainties
� Useful for particle flow algorithms, in development for 

detector optimisation, e.g. PandoraPFA

Recent developments with PandoraPFA…
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��� � Recent Improvements

« Technical Improvements
sminor bug fixes
s reduced memory footprint (~ factor 2) by on-the-fly  deleting

of temporary clusters, rather than waiting to event  end 
« Use of tracks (still TrackCheater )
« Photon Identification 

sEM cluster profile identification
« Particle ID

sMuch improved particle ID : electrons , conversions , 
KS����ππππ+ππππ-, ΛΛΛΛ����ππππ-p (no impact on PFA)

sSome tagging of K± ����µµµµ±νννν and ππππ± ���� µµµµ±νννν kinks
sNo explicit muon ID yet

« Fragment Removal
« “Calibration” – some interesting issues… 

Overview:
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e.g. Tracking I : extrapolation
« If a track isn’t matched to a cluster – previously t rack was dropped

(otherwise double count particle energy)    

« Not ideal – track better measured + direction
p track

pclust

« Now try multiple (successively looser) track-cluste r matching 
requirements e.g. “circle matching”

« As a result, fewer unmatched looping endcap tracks
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��� � Fragment Removal
« One of the final stages of PandoraPFA is to identif y “neutral 

fragments” from charged particle clusters

9 GeV track

6 GeV 
cluster

7 GeV cluster

9 GeV

9 GeV 

6 GeV 

9 GeV

6 GeV 

3 GeV 

« Previously the code to do this was “a bit of a mess”
« This has been significantly improved – but not yet o ptimised
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Fragment removal : basic idea
« Look for “evidence” that a cluster is associated wi th another 

9 GeV track

6 GeV 
cluster

7 GeV cluster

9 GeV

6 GeV 

3 GeV 

9 GeV

9 GeV 

6 GeV 

5 GeV

3 GeV 

4 GeV 

Distance of closest 
approach

Layers in close 
contact

Distance to
track extrap.

Fraction of energy 
in cone

« Convert to a numerical evidence score E
« Compare to another score “required evidence” for ma tching, R,

based on change in E/p chi-squared, location in ECA L/HCAL etc.
« If E > R then clusters are merged
« Rather ad hoc but works well (slight improvement wrt. previous)
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“Calibration” cont.
« Effect depends on cluster energy and isolation cut

10cm 25cm 50cmIsolation cut:

1.1 %2.7 %3.6 %50 cm

2.8 %6.1 %8.1 %25 cm

6.7 %12.7 %16.1 %10 cm

20 GeV KL10 GeV KL5 GeV KL

Fraction of energy rejected as isolated

∆∆∆∆ = 10 %

∆∆∆∆ =   5 %

∆∆∆∆ = 2.5 %

« Non linearity degrades PFA performance
« For now increase isolation cut to 25 cm (small impr ovement for PFA)
« Best approach ? 
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3.4 %0.534250 GeV

3.1 %0.418180 GeV

3.0 %0.305100 GeV

4.4 %0.29545 GeV

σσσσE/Ej
σσσσE/E = αααα/√Ejj
|cosθθθθ|<0.7

EJET

3.4 %0.532250 GeV

2.9 %0.395180 GeV

2.9 %0.287100 GeV

3.4 %0.22745 GeV

σσσσE/Ej
σσσσE/E = αααα/√Ejj
|cosθθθθ|<0.7

EJET

PandoraPFA v01-01 PandoraPFA v02- αααα

Current Performance cont.

« For 45 GeV jets, performance now equivalent to

23 % / √E 

« For TESLA TDR detector “sweet spot” at just the rig ht place 
100-200 GeV jets !

Caveat : work in progress, things will change

« However, only modest improvements at higher energy…
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Evolution

PandoraPFA v00- αααα

09/2006
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Evolution

PandoraPFA v01-01

06/2007
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Evolution

09/2007

PandoraPFA v02- αααα
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��� � Summary

« Concentrated on lower energy performance – major imp rovements !
« Also improvements in structure of code 

+ almost certainly some new

« Some small improvements for higher energy jets   

Summary:

« Development of high performance PFA is highly non-trivial   
« User feedback very helpful (thanks Wenbiao) 
« Major improvements on current performance possible

• “just” needs effort + fresh ideas 
« PandoraPFA needs a spring-clean (a lot of now redun dant code)

+ plenty of scope for speed improvements
• again needs new effort (I just don’t have time)

Perspective:
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��� � What Next

« Optimisation of new code 
sSlow procedure… takes about 6 CPU-days per variation  
sOnly small improvements expected – have found that t he 

performance is relatively insensitive to fine detai ls of alg.
« More study of non-linear response due to isolation

• Will look at RPC HCAL
« Detailed study of importance of different aspects o f PFA, e.g. 

what happens if kink finding is switched off… 
« Revisit high energy performance
« Update code to use LDCTracking
« Release version 02-00 on timescale of 1-2 months.

Plans:
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Compare PFAs using W+W- scatteringCompare PFAs using WCompare PFAs using W++WW-- scatteringscattering

All 2-jet mass pairs

2-jet mass pairs,
pairing selection

GeV

GeV [W.Yan, DR Ward]
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Calibration of PFAs is essential to understand ultimate detectorCalibration of PFAs is essential to understand ultimate detector
capabilities.capabilities.
Mandatory to have “fair”, objective  comparisons!Mandatory to have “fair”, objective  comparisons!
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Higgs self coupling studyHiggs self coupling studyHiggs self coupling study

�Michele slides I

[M.Faucci Giannelli]

� Exploits PandoraPFA, 

compares with other public 

algorithms (Wolf, newer

trackbased PFA)

� Significantly better 

performance in Pandora PFA in 

mean and resolution

Z µµZ µµ
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� Silicon pixel readout, minimal interlayer gaps, stability – prohibitive cost?

� UK developing “swap-in” alternative to baseline Si diode designs in ILD 
(+SiD)

� CMOS process, more mainstream:
� Industry standard, multiple vendors (schedule, cost)

� (At least) as performant – ongoing studies

� Simpler assembly

� Power consumption larger than analogue Si, ~x40 with 1st sensors, BUT
⇒ ~Zero effort on reducing this so far
⇒ Better thermal properties (uniform heat load), perhaps passive cooling
⇒ Factor ~10 straightforward to gain (diode size, reset time, voltage)

MAPSMAPSMAPS



ILD-UK, Cambridge, 21-Sep-2007Nigel Watson / Birmingham

Basic concept for MAPSBasic concept for Basic concept for MAPSMAPS

• How small?

• EM shower core density at 
500GeV is ~100/mm2

• Pixels must be<100××××100µµµµm2

• Our baseline is 50××××50µµµµm2

• Gives ~1012 pixels for ECAL –
“Tera-pixel APS”

• How small?

• EM shower core density at 
500GeV is ~100/mm2

• Pixels must be<100××××100µµµµm2

• Our baseline is 50××××50µµµµm2

• Gives ~1012 pixels for ECAL –
“Tera-pixel APS”

• Swap ~0.5x0.5 cm2 Si pads with small pixels

• “Small” := at most one particle/pixel

• 1-bit ADC/pixel, i.e. Digital ECALDigital ECAL

Effect of pixel sizeEffect of pixel size

50µµµµm

100µµµµm

>1 particle/
pixel

Incoming photon energy (GeV)W
e
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h
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e.g. SiD 16mm2 area cells

ZOOM

50××××50 m2

MAPS pixels

Tracking calorimeterTracking calorimeter
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Physics simulationPhysics simulationPhysics simulation 0. 5 Ge VM P V= 3 . 4 ke Vσ= 0. 8 ke V
5 G e VM P V= 3 . 4 ke Vσ= 0. 8 ke V

2 0 0 Ge VM P V= 3 . 4 ke Vσ= 0. 8 ke V
Geant4 energy of simulated hits

Ehit (keV)

Ehit (keV)

Ehit (keV)

� MAPS geometry implemented in Geant4 detector 
model (Mokka) for LDC detector concept

� Peak of MIP Landau stable with energy

� Definition of energy: E αααα Npixels

� Artefact of MIPS crossing boundaries
� Correct by clustering algorithm

� Optimal threshold (and uniformity/stability) 
important for binary readout

Threshold (keV)

σσ σσ(
E
)/
E

20 GeV photons
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CALICE INMAPS ASIC1CALICE INMAPS ASIC1CALICE INMAPS ASIC1

Architecture-specific
analogue circuitry

4 diodes
Ø 1.8 µµµµm

First round, four architectures/chip 
(common comparator+readout logic)

INMAPS process: deep p-well 
implant 1 µm thick under electronics 
n-well, improves charge collection

0.18µµµµm feature size
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� Physics data rate low – noise 
dominates

� Optimised diode for

� Signal over noise ratio

� Worst case scenario 
charge collection

� Collection time

Device level simulationDevice level simulationDevice level simulation

Signal/noiseSignal/noise

0.9 µm
1.8 µm
3.6 µm

Distance to diode
(charge injection point)

S
ig
na
l/
N
oi
se
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Attention to detail 1: digitisationAttention to detail 1: digitisationAttention to detail 1: digitisation

[J.Ballin/A-M.Magnan]

Digital ECAL, essential to simulate
charge diffusion, noise, in G4 simulations
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Attention to detail 2: beam backgroundAttention to detail 2: beamAttention to detail 2: beam backgroundbackground

� Beam-Beam interaction by 
GuineaPig

� Detector: LDC01sc

� 2 scenarios studied : 

� 500 GeV baseline,

� 1 TeV high luminosity

purple = innermost endcap radius
500 ns reset time Ł ~ 2‰ inactive pixels

[O.Miller]
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Near future plansNear future plansNear future plans

� Sensors mounted, testing has started
� No show stoppers so far

� Test device-level simulations using laser-based charge 
diffusion measurements at RAL
� λ=λ=λ=λ=1064, 532,355 nm,focusing < 2 µm, pulse 4ns, 

50 Hz repetition, fully automated

� Cosmics and source setup, Birmingham and Imperial, 
respectively.

� Potential for beam test at DESY end of 2007

� Expand work on physics simulations
� Early studies show comparable peformance to LDC 

baseline (analogue Si)
� Test performance of MAPS ECAL in ILD and SiD 

detector concepts
� Emphasis on re-optimisation of particle flow 

algorithms

July: 1st sensors
delivered to RAL

July: 1st sensors
delivered to RAL
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SummarySummarySummary
� UK well placed to play big part in ILD

� Make use of large CALICE datasets to optimise detector design
⇒ Test hadronic models / reduce dependence on MC model unknowns
⇒ Design detectors that we have proven we can build
⇒ Cannot test complete PFA algorithms directly with testbeam data – but can 

examine some key areas, e.g. fragment removal, etc.

� Physics studies for LoI
� Two mature examples already, others in preparation, more essential!
� Easy to get involved, quick start up with ILC s/w framework, PFA

⇒ “local” expertise/assistance available

� PandoraPFA
� The most performant PFA so far
� Essential tool for ILD (+other) concepts – but needs further development and 

optimisation
� …and people – from where?

� ECAL senstive detector: alternative to (LDC) baseline SiW
� CMOS MAPS digital ECAL for ILC

⇒ Multi-vendors, cost/performance gains
� New INMAPS deep p-well process (optimise charge collection)
� Four architectures for sensor on first chips, delivered to RAL Jul 2007
� Tests of sensor performance, charge diffusion to start in August
� Physics benchmark studies with MAPS ECAL to evaluate performance relative to 

standard analogue Si-W designs, for both SiD and LDC detector concepts

� Now is a good time to join ILC detector concept study
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Backup slides…Backup slides…Backup slides…
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Architectures on ASIC1Architectures on ASIC1Architectures on ASIC1

Presampler Preshaper

Type dependant area: capacitors, and big resistor or monostable
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Energy points and particle types

6,8,10,12,15,18,20,25,30,40,50,
60,80,100,120,130,150,180

6,8,10,12,15,18,20,25,30,40,50,60,80Energy (GeV)

π±/e±/protonsπ±/e±Particles

Collected during TBProposed in TB plan

n Beam energies extrapolated from secondary beam
n Electron beam obtained sending secondary beam on Pb target

n π/e separation achieved using Cherenkov threshold
detector filled with He gas
n Possible to distinguish π from e for energies from 25 to 6 GeV

n π/proton separation achieved using Cherenkov threshold 
detector with N2 gas
n Possible to distinguish π from protons for energies from 80 to 30 

GeV

http://www.pp.rhul.ac.uk/~calice/fab/WWW/runSummary.htm
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Angle and position scans

0, 10, 20, 300, 10, 15, 20, 30Angles

Centre of ECAL
±6cm from ECAL centre wafer

Bottom slab of ECAL (±6,0,±3cm, -3cm)

Centre of AHCAL

Centre of ECAL; AHCAL ±6cm off beam-line
Inter-alveolae (±3cm, ±3cm)

Centre of ECAL

Centre of AHCAL

Inter-alveolae

Position
scans

Collected during TBProposed in TB plan

• • • • • -6
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Total events collected

Integrated Luminosity

Event Types

http://www.pp.rhul.ac.uk/~calice/fab/WWW/dataSummary.htm
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Models comparison
Differential quantities

The HCAL high granularity offers the possibility to  investigate longitudinal and lateral 
shower shapes with unprecedented precision:

- 38 points for longitudinal profile (if ECAL and TCMT included up to 84)
- 9 points for lateral profile

Study on hadronic shower profiles, G. Mavromanolakis (2004) 
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The sensor test setupThe sensor test setupThe sensor test setup

4 2 p ix e ls
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•Neighbouring hit:
•hit ? Neighbour’s contribution

•no hit ? Creation of hit from charge 
spread only

•All contributions added per pixel

•+ noise σ = 100 eV

Impact of digitisationImpact of digitisationImpact of digitisation

� E initial : geant4 deposit

•What remains in the cell after 
charge spread assuming perfect P-
well

•+ noise σ = 100 eV, minus dead areas 
: 5 pixels every 42 pixels in one 
direction
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� Physics data rate low – noise 
dominates

� Optimised diode for

� Signal over noise ratio

� Worst case scenario 
charge collection

� Collection time.

Device level simulationDevice level simulationDevice level simulation

Using Centaurus TCAD for 
sensor simulation + CADENCE 
GDS file for pixel description

Signal/noiseCollected charge

0.9 µm
1.8 µm
3.6 µm

Distance to diodeDistance to diode


