CALICE-UK and the ILD detector

<u>Nigel Watson</u> (Birmingham Univ.)

- Motivation
- Testbeam
- Particle Flow
- Physics Studies
- MAPS ECAL
- Summary

For the CALICE UK group

ILC: high performance calorimetry

Essential to reconstruct jet-jet invariant masses in hadronic final states, e.g. separation of vvW+W-, vvZ⁰Z⁰, tth, Zhh, vvH

Nigel Watson / Birmingham

ECAL design principles

- Shower containment in ECAL, ΣX_0 large
- Small R_{moliere} and X₀ compact and narrow showers
- λ_{int}/X_0 large, \therefore EM showers early, hadronic showers late
- ECAL, HCAL inside coil
 - Lateral separation of neutral/charged particles/'particle flow'
- Strong B field to suppresses large beam-related background in detector
 - Compact ECAL (cost of coil)
- Tungsten passive absorber
- Silicon pixel readout, minimal interlayer gaps, stability but expensive...
- Develop "swap-in" alternatives to baseline Si diode designs in ILD (+SiD)
 e.g. MAPS

CALICE: from MC to reality to MC

Ultimate goal

High granularity calorimeter optimised for the Particle Flow measurement of multi-jet final state at the International Linear Collider

CAlorimeter for the LInear Collider Experiment

Initial task

Build prototype calorimeters to

- Establish viable technologies
- Collect hadronic shower data with unprecedented granularity
 - tune reconstruction algorithms
 - validate existing MC models

<u>Next task</u>

Exploit validated models for whole detector optimisation

Test beam prototypes

Nigel Watson / Birmingham

Nigel Watson / Birmingham

Reality: ECAL linearity/resolution

CALICE testbeam outlook to date

- Integrated approach to develop optimal calorimety, not just HCAL
- Complete understanding of 2006-7 data
 - Adding yet more realism to testbeam model (material, instrumented regions, etc.)
 - Understanding beamline characterisation of beam itself empirically, or by modelling ~accelerator-style the transport line (BDSIM et al?)
- Include experience with modelling test beam prototypes into uncertainties in "whole detector" concept models
- Detailed study of hadronic shower substructure
 - Separation of neutrons, e.m., hadronic components, mip-like,
 - "deep analysis"
- Data will reduce interaction modelling uncertainties
 - Useful for particle flow algorithms, in development for detector optimisation, e.g. PandoraPFA

Recent developments with PandoraPFA...

Recent Improvements

Overview:

- « Technical Improvements
 - s minor bug fixes
 - s reduced memory footprint (~ factor 2) by on-the-fly deleting of temporary clusters, rather than waiting to event end
- « Use of tracks (still TrackCheater)
- « Photon Identification
 - **B EM cluster profile identification**
- « Particle ID

s Much improved particle ID : electrons, conversions,

 $K_{s} \rightarrow \pi^{+}\pi^{-}, \Lambda \rightarrow \pi^{-}p$ (no impact on PFA)

s Some tagging of $K^{\pm} \rightarrow \mu^{\pm} \nu$ and $\pi^{\pm} \rightarrow \mu^{\pm} \nu$ kinks

s No explicit muon ID yet

« Fragment Removal

« "Calibration" – some interesting issues...

e.g. Tracking I : extrapolation

- If a track isn't matched to a cluster previously track was dropped (otherwise double count particle energy)
- « Not ideal track better measured + direction

- Now try multiple (successively looser)/track-cluster matching requirements e.g. "circle matching"
- « As a result, fewer unmatched looping endcap tracks

Fragment Removal

One of the final stages of PandoraPFA is to identify "neutral fragments" from charged particle clusters
 7 GeV cluster
 7 GeV cluster
 6 GeV

- « Previously the code to do this was "a bit of a mess"
- « This has been significantly improved but not yet optimised

Fragment removal : basic idea

« Look for "evidence" that a cluster is associated with another

- Convert to a numerical evidence score E
- Compare to another score "required evidence" for matching, R, based on change in E/p chi-squared, location in ECAL/HCAL etc.
- « If E > R then clusters are merged
- « Rather ad hoc but works well (slight improvement wrt. previous)

"Calibration" cont.

- **«** Non linearity degrades PFA performance
- « For now increase isolation cut to 25 cm (small improvement for PFA)
- « Best approach ?

Current Performance cont.

Caveat : work in progress, things will change

PandoraPFA v01-01				PandoraPFA v02-α		
E _{JET}	$\sigma_{\rm E}/{\rm E} = \alpha/\sqrt{{\rm E}_{\rm jj}}$ cos θ <0.7	σ _E /E _j		E _{JET}	$\sigma_{\rm E}/{\rm E} = \alpha/\sqrt{{\rm E}_{\rm jj}}$ cosθ <0.7	σ _E /E _j
45 GeV	0.295	4.4 %		45 GeV	0.227	3.4 %
100 GeV	0.305	3.0 %		100 GeV	0.287	2.9 %
180 GeV	0.418	3.1 %		180 GeV	0.395	2.9 %
250 GeV	0.534	3.4 %		250 GeV	0.532	3.4 %

« For 45 GeV jets, performance now equivalent to

« For TESLA TDR detector "sweet spot" at just the right place 100-200 GeV jets !

« However, only modest improvements at higher energy...

Evolution

Evolution

Evolution

Summary

Summary:

- « Concentrated on lower energy performance major improvements !
- « Also improvements in structure of code
 - + almost certainly some new

« Some small improvements for higher energy jets

Perspective:

- « Development of high performance PFA is highly non-trivial
- « User feedback very helpful (thanks Wenbiao)
- « Major improvements on current performance possible
 - "just" needs effort + fresh ideas
- « PandoraPFA needs a spring-clean (a lot of now redundant code)
 - + plenty of scope for speed improvements
 - again needs new effort (I just don't have time)

What Next

Plans:

- Optimisation of new code
 - **s** Slow procedure... takes about 6 CPU-days per variation
 - s Only small improvements expected have found that the performance is relatively insensitive to fine details of alg.
- « More study of non-linear response due to isolation
 - Will look at RPC HCAL
- Detailed study of importance of different aspects of PFA, e.g. what happens if kink finding is switched off...
- « Revisit high energy performance
- « Update code to use LDCTracking
- « Release version 02-00 on timescale of 1-2 months.

Compare PFAs using W⁺W⁻ scattering

Without W mass cut @ LDC00Sc: W peak @ Wolf PFA ???

Nigel Watson / Birmingham

LDC01Sc: Pandora PFA vs. Perfect case

- likelihood from combined WW/ZZ fitting
- Pink: Pandora PFA
- Green: Perfect Pandora PFA

Nigel Watson / Birmingham

Summary and outlook

• We study WW scattering with LDC00Sc & LDC01Sc detector model, and extract α_4 & α_5 , which are comparable with that of TESLA fast simulation.

• Calibration constants @ PFAs for LDC00Sc and LDC01Sc

- wrong calibration constants => unreliable conclusion ???

- Pandora PFA vs. Wolf PFA
 - W/Z peak @ Wolf PFA ???
 - * not used for α_4 & α_5 fitting due to W/Z mass cut in the analysis
 - Pandora PFA \sim Perfect Pandora PFA
- LDC00Sc vs. LDC01Sc
 - fitted α_4 & α_5 are comparable.
 - for selected events number, LDC00Sc : LDC01Sc = 1: 0.96
 - distributions of LDC00Sc are comparable with that of LDC01Sc

Calibration of PFAs is essential to understand ultimate detector capabilities.

Mandatory to have "fair", objective comparisons!

Nigel Watson / Birmingham

Higgs self coupling study

- Exploits PandoraPFA, compares with other public algorithms (Wolf, newer trackbased PFA)
- Significantly better performance in Pandora PFA in mean and resolution

[M.Faucci Giannelli]

Nigel Watson / Birmingham

MAPS

- Silicon pixel readout, minimal interlayer gaps, stability prohibitive cost?
- UK developing "swap-in" alternative to baseline Si diode designs in ILD (+SiD)
- CMOS process, more mainstream:
 - Industry standard, multiple vendors (schedule, cost)
 - (At least) as performant ongoing studies
 - Simpler assembly
 - Power consumption larger than analogue Si, ~x40 with 1st sensors, BUT ⇒ ~Zero effort on reducing this so far
 - \Rightarrow Better thermal properties (uniform heat load), perhaps passive cooling
 - \Rightarrow Factor ~10 straightforward to gain (diode size, reset time, voltage)

Nigel Watson / Birmingham

Basic concept for MAPS

- Swap ~0.5×0.5 cm² Si pads with small pixels
 - "Small" := at most one particle/pixel
 - · 1-bit ADC/pixel, i.e. Digital ECAL

- EM shower core density at 500GeV is ~100/mm²
- Pixels must be<100 $\times 100 \mu m^2$
- \cdot Our baseline is 50×50 μm^2
- Gives ~10¹² pixels for ECAL -"Tera-pixel APS"

Tracking calorimeter

Nigel Watson / Birmingham

Physics simulation

- MAPS geometry implemented in Geant4 detector model (Mokka) for LDC detector concept
- Peak of MIP Landau stable with energy
- **Definition of energy:** E α N_{pixels}
- Artefact of MIPS crossing boundaries
 - Correct by clustering algorithm
- Optimal threshold (and uniformity/stability) important for binary readout

CALICE INMAPS ASIC1

First round, four architectures/chip (common comparator+readout logic)

0.18µm feature size

INMAPS process: deep p-well implant 1 µm thick under electronics n-well, improves charge collection

Nigel Watson / Birmingham

Device level simulation

- Physics data rate low noise dominates
- Optimised diode for
 - Signal over noise ratio
 - Worst case scenario charge collection
 - Collection time

Nigel Watson / Birmingham

Attention to detail 1: digitisation

[J.Ballin/A-M.Magnan]

Nigel Watson / Birmingham

Attention to detail 2: beam background

Dixels Inactive

ð

- Beam-Beam interaction by GuineaPig
- Detector: LDC01sc
- 2 scenarios studied :
 - ▶ 500 GeV baseline,
 - 1 TeV high luminosity

purple = innermost endcap radius 500 ns reset time $\mathbb{E} \sim 2\%$ inactive pixels 1.3E-02 1.2E-02 1.1E-02 . 300mm to 400mm Radius 1.0E-02 400mm to 500mm Radius 500mm to 600mm Radius 9.0E-03 600mm to 700mm Radius 8.0E-03 700mm to 800mm Radius 800mm to 900mm Radius 7.0E-03 900mm to 1000mm Radius 1000mm to 1100mm Radius 6.0E-03 1100mm to 1200mm Radius 1200mm to 1300mm Radius 5.0E-03 1300mm to 1400mm Radius 4.0E-03 1400mm to 1500mm Radius 1500mm to 1600mm Radius 3.0E-03 1600mm to 1700mm Radius 1700mm to 1800mm Radius 2.0E-03 1.0E-03 0.0E+00 0.0E+00 1.0E+03 2.0E+03 3.0E+03 4.0E+03 5.0E+03 Reset time (ns) [O.Miller] **MAPS** Reset time

Nigel Watson / Birmingham

ILD-UK, Cambridge, 21-Sep-2007

Near future plans

- Sensors mounted, testing has started
 No show stoppers so far
- Test device-level simulations using laser-based charge diffusion measurements at RAL
 - > λ =1064, 532,355 nm, focusing < 2 µm, pulse 4ns, 50 Hz repetition, fully automated
- Cosmics and source setup, Birmingham and Imperial, respectively.
- Potential for beam test at DESY end of 2007
- Expand work on physics simulations
 - Early studies show comparable peformance to LDC baseline (analogue Si)
 - Test performance of MAPS ECAL in ILD and SiD detector concepts
 - Emphasis on re-optimisation of particle flow algorithms

ILD-UK, Cambridge, 21-Sep-2007

Summary

- UK well placed to play big part in ILD
 - Make use of large CALICE datasets to optimise detector design
 - \Rightarrow Test hadronic models / reduce dependence on MC model unknowns
 - \Rightarrow Design detectors that we have proven we can build
 - ⇒ Cannot test complete PFA algorithms directly with testbeam data but can examine some key areas, e.g. fragment removal, etc.
- Physics studies for LoI
 - Two mature examples already, others in preparation, more essential!
 - Easy to get involved, quick start up with ILC s/w framework, PFA

 "local" expertise/assistance available
- PandoraPFA

- The most performant PFA so far
- Essential tool for ILD (+other) concepts but needs further development and optimisation
- ...and people from where?
- ECAL sensitve detector: alternative to (LDC) baseline SiW
 - CMOS MAPS digital ECAL for ILC
 - \Rightarrow Multi-vendors, cost/performance gains
 - New INMAPS deep p-well process (optimise charge collection)
 - Four architectures for sensor on first chips, delivered to RAL Jul 2007
 - Tests of sensor performance, charge diffusion to start in August
 - Physics benchmark studies with MAPS ECAL to evaluate performance relative to standard analogue Si-W designs, for both SiD and LDC detector concepts
- Now is a good time to join ILC detector concept study

Nigel Watson / Birmingham

Nigel Watson / Birmingham

Architectures on ASIC1

Nigel Watson / Birmingham

Energy points and particle types

	Proposed in TB plan	Collected during TB
Energy (GeV)	6,8,10,12,15,18,20,25,30,40,50,60,80	6,8,10,12,15,18,20,25,30,40,50, 60,80,100,120,130,150,180
Particles	π±/e±	π⁺/e⁺/protons

- n Beam energies extrapolated from secondary beam
 - Electron beam obtained sending secondary beam on Pb target
- n π /e separation achieved using Cherenkov threshold detector filled with He gas
 - Possible to distinguish π from e for energies from 25 to 6 GeV
- n π /proton separation achieved using Cherenkov threshold detector with N₂ gas
 - n Possible to distinguish π from protons for energies from 80 to 30 GeV

Nigel Watson / Birmingham

Total events collected

tp://www.pp.rhul.ac.uk/~calice/fab/WWW/dataSummary.htm

Models comparison

Differential quantities

Study on hadronic shower profiles, G. Mavromanolakis (2004)

The HCAL high granularity offers the possibility to investigate longitudinal and lateral shower shapes with unprecedented precision:

- 38 points for longitudinal profile (if ECAL and TCMT included up to 84)

- 9 points for lateral profile

ILD-UK, Cambridge, 21-Sep-2007

Nigel Watson / Birmingham

The sensor test setup

Impact of digitisation

E initial : geant4 deposit

•What remains in the cell after charge spread assuming perfect Pwell

•Neighbouring hit:

hit ? Neighbour's contribution
no hit ? Creation of hit from charge spread only

·All contributions added per pixel

•+ noise σ = 100 eV

+ noise σ = 100 eV, minus dead areas
: 5 pixels every 42 pixels in one direction

Nigel Watson / Birmingham

Device level simulation

- Physics data rate low noise dominates
- Optimised diode for
 - Signal over noise ratio
 - Worst case scenario charge collection
 - Collection time.

Using Centaurus TCAD for sensor simulation + CADENCE GDS file for pixel description

