Overview and progress from ALLE

Valeria Bartsch, University College London presenting the work of my colleagues

- Introduction
- UK activities
 - test beams analysis and data taking
 - DAQ on the way to a technical prototype
 - MAPS an interesting detector concept
 - PFA and physics analysis Higgs self coupling and WW scattering
 - mechanical and thermal studies

- Introduction
- UK activities
 - test beams analysis and data taking
 - DAQ on the way to a technical prototype
 - MAPS an interesting detector concept
 - PFA and physics analysis Higgs self coupling and WW scattering
 - mechanical and thermal studies

Members of the

Goals of the Collaboration

To provide a basis for choosing a **calorimeter technology** for the ILC detectors

Physics prototypes

Various technologies (silicon, scintillator, gas) Large cubes (1 m³ HCALs) Not necessarily optimized for an ILC calorimeter Detailed test program in particle beams To **measure** electromagnetic and hadronic showers with unprecedented granularity

Technical prototypes

Appropriate shapes (wedges) for ILC detectors All bells and whistles (cooling, integrated supplies...) Detailed test program in particle beams

To **advance** calorimeter technologies and our **understanding** of calorimetry in general

To design, build and test **ILC calorimeter prototypes**

CALICE Projects and the Concepts

CALICE Proje	ects					
ECALs	Silicon - Tungsten			Detector Concept	Optimized for PFA	Compensating Calorimetry (hardware)
	Scintillator - Lead /			SiD	Yes	Νο
HCALs	Scintillator - Steel			ILD	Yes	No
	RPCs - Steel			4 th	No	Yes
	GEMs- Steel					
	MicroMegas - Steel	croMegas - Steel CALICE projects on calorimeters wit			jects on d eters with	etectors with very fine
TCMTs [*]	Scintillator - Steel	segmentation of the readout				

* Tail catcher and Muon Tracker

PFAs and Calorimetry

Fact

Particle Flow Algorithms improve energy resolution compared to calorimeter measurement alone (see ALEPH, CDF, ZEUS...)

How do they work?

Particles in jets	Fraction of energy	Measured with	Resolution [σ ²]	
Charged	65 %	Tracker	Negligible	
Photons	25 %	ECAL with 15%/√E	0.07 ² E _{jet}	≻ 18%
Neutral Hadrons	10 %	ECAL + HCAL with 50%/√E	0.16 ² E _{jet}	J
Confusion	The real	challenge	≤ 0.04 ² (goal)	

/√E

- Introduction
- UK activities
 - testbeams analysis and data taking
 - DAQ on the way to a technical prototype
 - MAPS an interesting detector concept
 - PFA and physics analysis Higgs self coupling and WW scattering
 - mechanical and thermal studies

CALICE Test Beam Activities

DESY	electrons 1 – 6	GeV	2006
Silicon-E Scintillat	ECAL tor HCAL	Scintillator ECAL TCMT	
CERN	electrons and j	pions 6 – 120 GeV	2006 and 2007
Silicon-E TCMT (d	ECAL complete)	Scintillator HCAL	

UK activities concentrate on test beam operation and ECAL analysis

CALICE Test Beam Activities - data analysis 2006: Special emphasis on UK contributions

Transverse shower profile

Moliere radius R_M contains 90% of EM shower energy independently of energy $R_M(W) = 9 \text{ mm}$ Gap will increase $R_M(W) - R_M^{eff}$

CALICE Test Beam Activities - analysis of 2006 data: detailed look

Example: longitudinal shower profile

data suggest that more preshowering happens than MC
leakage energy is not consistent with estimates from beam energy

discrepancy between MC and data:

- low pulse height hits
- inter-wafer gaps
- shower depth
- number of hits
- transverse shower shape
- mismatch of energy scale between CERN and DESY

Ideas to investigate:

- understand beam line better
- optimise alignment and rotation of detector
- understand passive material in front of calo better
- optimise calibration

CALICE Test Beam Activities - 2007

Physics prototype

3 structures with different W thicknesses
30 layers; 1 x 1 cm² pads
12 x 18 cm² instrumented in 2006 CERN tests about 6480 readout channels

CALICE Test Beam Activities - 2007

summary of data taking:

- π⁺, π⁻, e⁺, e⁻, p:
- 6-180 GeV
- with position scans
- angles from 0⁰ 30⁰

Test beam activities with physics prototypes

	Project	2007b	2008a	2008b	2009a	2009b
ECAL	Si-W	CERN test beam	FNAL test beam			
	MAPS	1 st prototype chip and test beam		2 nd prototype chip	DESY test beam	
	Scintillator			FNAL test beam		
HCAL	Scintillator	CERN test beam	FNAL test bea	am		
	RPC	Vertical slice test in FNAL test beam	Physics prototype construction	FNAL test beam		
	GEM	Vertical slice test In FNAL test beam	Further R&D on GEMs Ph pro co		Physics prototype construction	FNAL test beam
	MicroMegas		1 plane			
ТСМТ	Scintllator	CERN test beam	FNAL test beam			

- Introduction
- UK activities
 - testbeams analysis and data taking
 - DAQ on the way to a technical prototype
 - MAPS an interesting detector concept
 - PFA and physics analysis Higgs self coupling and WW scattering
 - mechanical and thermal studies

DAQ architecture

- Slab hosts VFE chips
- DIF connected to Slab
- LDA servicing DIFs
- LDAs read out by ODR
- PC hosts ODR, through PCIexpress
- C&C routes clock,

controls

ODR and Data Rates

Off Detector Receiver: Gets data into a usable form for processing

3 logical tasks:•Receive•Process

•Store

- ODR is a commercial FPGA board with PCIe interface
- Custom firm- and software
- Performance studies & optimisation

Clock & Controls Distribution

- C&C unit provides machine clock and fast signals to ODR, LDA (and DIF?)
- Clock jitter requirement seems not outrageous (at the moment)
- Low-latency fast signal

LDA; LDA-DIF and DIF-DIF link

LDA

1st Prototype is again a commercial FPGA board with custom firmware and hardware add-ons:

- Gbit ethernet and Glink Rx/Tx for ODR link -probably optical
- Many links towards DIFs

LDA-DIF link:

Serial link running at multiple of machine clock
LDAs serve even/odd DIFs for redundancy
DIF-DIF link:

Redundancy against loss of LDA linkProvides differential signals:

- -Clock in both directions
- -Data and Control connections
- -Two spares: one each direction

- Introduction
- UK activities
 - testbeams analysis and data taking
 - DAQ on the way to a technical prototype
 - MAPS an interesting detector concept
 - PFA and physics analysis Higgs self coupling and WW scattering
 - mechanical and thermal studies

MAPS ECAL

Monolithic Active Pixel Detectors

In-pixel comparator and logic $50 \times 50 \ \mu m^2$ pixels 10^{12} pixels for the ECAL

Digital (single-bit) readout

. . . .

Test Sensor Area of 1 x 1 cm² ~ 28,000 pixels Testing different architectures nwell or p-well

Extensive simulation studies Charge collection effects Resolution versus threshold

Effect of charge spread model

Optimistic scenario:

Perfect P-well after clustering: large minimum plateau → large choice for the threshold !!

Pessimistic scenario: Central N-well absorbs half of the charge, but minimum is still in the region where noise only hits are negligible + same resolution !!!

Plans for the autumn

- Sensors delivered this summer, tests can go forward
- Charge diffusion studies with a powerful laser setup at RAL :
 - 1064, 532 and 355 nm wavelength,
 - focusing < 2 μ m,
 - pulse 4ns, 50 Hz repetition rate,
 - fully automated
- Cosmics and source setup to provide by Birmingham and Imperial respectively

- Introduction
- UK activities
 - testbeams analysis and data taking
 - DAQ on the way to a technical prototype
 - MAPS an interesting detector concept
 - PFA and physics analysis Higgs self coupling and WW scattering
 - mechanical and thermal studies

News from the Pandora particle flow algorithm

Eight Main Stages:

- Preparation (MIP hit ID, isolation, tracking)
- Loose clustering in ECAL and HCAL
- Topological linking of clearly associated clusters
- Courser grouping of clusters
- Iterative reclustering (e.g. according to jet energy)
- Photon recovery (new
- Fragment removal (new)
- Formation of final particle flow objects

E _{jet}	σ _E /E = α/ √(E/GeV)	σ _E /E
45 GeV	0.227	3.4%
100 GeV	0.287	2.9%
180 GeV	0.395	2.9%
250 GeV	0.532	3.4%

Mark Thomson's comment: Now convinced that PFA can deliver the required ILC jet energy performance

News from the Pandora particle flow algorithm

Perfect Pandora added to Pandora which relies on MC information to create the ProtoClusters.

	$\sigma_{\rm E}/{\rm E} = \alpha / \sqrt{({\rm E}/{\rm GeV})}$			
E _{jet}	PerfectPandora	Pandora		
100 GeV	0.220	0.305		
180 GeV	0.305	0.418		

 \Rightarrow the current code is not perfect, things will get better

Future developments:

- moving to LDCTracking is highest priorities
- optimisations of newly introduced features

WW scattering

WW scattering model independent way of checking the unitarity breakdown of the standard model

⇒ detector
optimisation with this
study possible
⇒ shows room for
improvement within
Pandora

Higgs Self Coupling

study of the Higgs self coupling constant

- Pandora has very good RMS
- Wolf reconstructs too high mass
- Track based PFA works, but problems with muons

- Introduction
- UK activities
 - testbeams analysis and data taking
 - DAQ on the way to a technical prototype
 - MAPS an interesting detector concept
 - PFA and physics analysis Higgs self coupling and WW scattering
 - mechanical and thermal studies

Mechanical and Thermal Studies

- Sensor attached to PCBs with conductive glue
 - about 100,000 glue joints
 - all have to work in a reasonably high radiation environment and stay stuck for 10 years -> long-term tests underway
- Assembly and Integration studies
 - Sensor attachments to PCBs and associated testing
 - Integration of cooling and services on the EUDET module
 - Coordinating task with French groups

Conclusion:

• test beams:

2006 analysis needs to be finalised, 2007 analysis not yet started, challenging program for 2008/2009

• DAQ:

at the moment only components ready, need to be integrated to a whole system by 2008 test beam in 2009

• MAPS:

making good progress, in the phase of prototype testing

• PFA:

success story of the UK, WW scattering a good testing analysis, probably need a few more physics analyses