

Introduction

- The SiD Calorimetry System is build around the Particle Flow paradigm
 - High granularity
 - Located inside the solenoid
 - Well integrated with Tracking
- The ECAL is designed as *Imaging ECAL*
 - Material of choice is Si+W
 - Sampling calorimeter
 - Good energy resolution
 - Compact
 - Segmentation smaller than $r_{Moliere}$

Physics with the ECAL

- Multi-jet final states (Higgs, Top ..)
 - π° measurement should not limit jet resolution
 - identify and measure hadronic showers
 - track charged particles
- $\boldsymbol{\tau}$ id and analyses
- Photons
 - Energy resolution, e.g. $h{\rightarrow}\gamma\gamma$
 - Vertexing of photons ($\sigma_{\rm b}{\sim}1$ cm), e.g. for SUSY studies
- Electron ID
- Bhabhas and Bhabha acollinearity
- Hermiticity
 - \Rightarrow Imaging ECAL can do all this

Some Examples

Jet Environment

 $\tau^{+} \rightarrow \rho^{+} \nu \quad (\pi^{+} \pi^{o} \nu)$

Sip - Segmentation requirements

- The above benefit from a highly segmented (in 3D) ECAL
- The resolving power depends on and segmentation.
- We want segmentation significantly smaller than $r_{Moliere}$
 - how much smaller is an open question

Two EM-shower separability in LEP data with the OPAL Si-W LumCal :

Science & Technology Facilities Council Rutherford Appleton Laboratory

Mechanical layout

longitudinal:

1 mm readout

SiD Requirements

- Fit in common mechanical structure
- Power pulsing (1 % duty cycle)
 - passive cooling
 - Requires < 40 mW/channel
- Single Bunch Time stamping

Improvements in v2

Thinner traces

- 2 times less stray capacitance
- 2 times larger resistance
- Split pixels at center
 - 2 times less stray capacitance
- Series resistance for longest traces is 1 k
- Upper limit on irreducible noise
 - $-C_{tot}\sqrt{4kTRB}/e$ 500 electrons longest trace
 - 400 electrons congested area
 - Assumes 0.5 μ s shaping time, bandwidth B = 106 Hz

CV curves

Rutherford Appleton Laboratory

11

KPix readout chip

- 1024 channels
 - prototypes have 64 channels
- bump-bondable
- 13 bit ADC and Dynamic Gain selection
- 0.25 micron CMOS
- ~ 20 mW/channel
- KPiX is also foreseen to be used in
 - Tracker
 - HCAL
 - Muon chambers

• Si D KPiX-v6 gold-stud bonded to v1 sensors

Initial test results (1/25/08, UO) of first attempt (Palomar Tech.):

one open / 24 connections tested

KPiX in Detail

- Threshold T_1 is used to inhibit resets
- Threshold T_2 is used to enable data storage
- Bunch clock (time) is stored in SRAM

• Analog charge is stored on capacitors

(set at 2 × noise)
(set at 4 × noise)
(13 bit precision)
(13 bit precision)

Current Status

- Working on first 1024 channel version
 - 64 channel prototypes are tested extensivel
 - 7th generation prototype available
 - Improved Noise performance
 - One intermediate 256/512 channel version
- Demonstrate Bump-bonding of KPiX
- Build Test beam module (30 layers)
 - Design of stack has started
 - Wafers have been delivered

KPiX V7 new reset mode

- The switch in series with the reset is normally closed and it
- Opens when a signal is sensed.
- Supports range switching
- The old periodic reset can also be selected

KPiX V7 first results

TeraPixel Option

- Digital ECAL
 - Operates as a shower particle counter
- Based on MAPS technology
 - Using Deep p-well INMAPS process
 - 50 x50 micron pixels
- First generation sensor TPAC1 has been manufactured
 - 168x168 pixels, 8.2 million transistors
 - First test results encouraging
- TPAC1.1 to be submitted in July
- See Talk by John Wilson

First mechanical design

Si-W Calorimeter Concept

ECAL Parameters

20

Science & Technology Facilities Council

Rutherford Appleton Laboratory

Marcel Stanitzki

n

Sensor Integration

•It is not possible to cover all the W plates dimension with the same silicon sensor size.

- •Increased number of masks for the edges
- •Hexagon geometry is an ideal tiling pattern, but doesn't make life easier : pins, overlap, cables

ECAL Wedges

Integration into SiD

Summary

- From Ray Frey:
 - The recent political choices in the U.S. and U.K. have thrown a monkey wrench in the works.
- But still making good steady progress ...
- Still going strong for the LoI
- Always open for interested people
- Thanks to Ray Frey, John Jaros, Marco Oriunno, David Strom, Mani Tripathi for comments & material

