CALICE-UK: The Final Curtain

Paul Dauncey, Imperial College London

Some history

- CALICE formed in 2001
 - CAlorimetry for LInear Collider Experiments
- Five UK groups joined CALICE in 2002
 - Provided readout electronics and DAQ for "physics prototype" beam tests
 - Performed data analysis and ILC physics studies
- Two new groups joined for second UK grant in 2005
 - Continued beam test work and physics studies
 - Added DAQ and mechanics work for "technical prototypes"; expanded to include EUDET effort later
 - Started study of digital electromagnetic calorimetry
- CALICE-UK grant finishes in one week

Beam test

Combined Drift_Chambers-ECAL-AHCAL-TCMT test-beam operations performed

Test beam goal:

- establish technology to use
- tune the reconstruction algorithms
- validate/tune Monte Carlo models

"Physics prototypes", not ILC-like modules

Beam test: SiW ECAL

Beam test: ScW ECAL

Beam test: ScTile HCAL

- Active layers: Scintillator tiles
 - high granularity in the layer center: 100 3x3 cm² tiles, then 6x6 cm² and 12 x12 cm²
 - light collection via wls fiber, read out with SiPM

Event displays with ScW ECAL

- Worse granularity that SiW ECAL so worse PFA performance
- But much cheaper...

24 Mar 2009

Reasonable energy resolution considering that the main aim is to spatial granularity

 $E_{\rm Meas}$

 $^{\prime}E/\mathrm{GeV}$

ScW ECAL response

Pion response: ECAL and HCAL

DAQ: Full system for technical prototypes

Technical prototypes are ILC-like modules

"Complete" systems, including DAQ, developed within EUDET programme

Detector Unit: ASICs

DIF: Detector InterFace connects generic DAQ and services

LDA: Link/Data Aggregator fans out/in 8–10 DIFs and drives links to ODR

ODR: Off-Detector Receiver is PC interface

CCC: Clock and Control Card fans out to ODRs (or LDAs)

DAQ: On detector

DAQ: Off detector

CCC: custom board, production complete. Possible reuse in SPIDER

ODR: fully commercial board

Mechanics: silicon detector gluing

- Silicon diode contacts made with conductive glue
 - Must be mechanically robust, low resistance, and uniform
 - Would need ~20M glue joints

- Uniform 100µm gap achieved
- Production of technical prototype silicon detectors glued and delivered in Jan

24 Mar 2009

Mechanics: detector support

- Demonstrator module to house the EUDET PCBs/heating devices
- First carbon fibre/tungsten module completed; metrology ongoing.

Digital ECAL

Counting charged particles gives intrinsically better ECAL resolution than measuring energy deposits; no Landau fluctuations

> Small (~50µm) pixels with binary readout to estimate particle count

Two rounds of sensor production so far; next due in May

See **SPIDER** talk for more details

Physics studies: PFA

- Z and W separation at 500 GeV achievable
- Degradation at 1TeV but could be overcome by thicker HCAL
- PFA not ruled out for CLIC energies

rms90	PandoraPFA v03-	
Ez	σ ε/Ε	σ _{m/} m
125 GeV	2.4 %	2.7 %
250 GeV	2.5 %	3.1 %
500 GeV	3.1 %	4.1 %
1 TeV	4.2 %	6.2 %
1.5 TeV	5.6 %	8.2 %

Physics studies: LoI contributions

- $Br(H \rightarrow cc)$ from ZH
- Reduce WW/ZZ and qqgg background with kinematic fits and c-tagging
- Rate (30±5)% from 250 fb⁻¹

Anomalous coupling limits from vvWW/vvZZ→vvqqqq

- $-1.38 < \alpha_4 < +1.10$
- $-0.92 < \alpha_5 < +0.77$

24 Mar 2009

Future for the UK studies

- Beam tests continue in 2009 and 2010
 - FNAL with ScW ECAL and AHCAL
 - Move in RPC digital HCAL with ECAL
 - Gives direct comparison of both ECALs and both HCALs
 - Very little UK effort available; only academics
- Technical prototypes will continue development
 - EUDET funding up to end 2009 allows completion of DAQ system
 - UK DAQ and techniques will be used but without UK support
 - Major loss of UK influence and expertise
- Digital ECAL work will continue within SPIDER
 - See next talk; will also allow some physics studies
- Physics PFA studies will continue with PRD
 - New grant to fund an RA starts in next FY
 - Could continue to contribute to ILD and SiD at some level