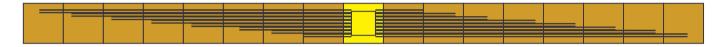
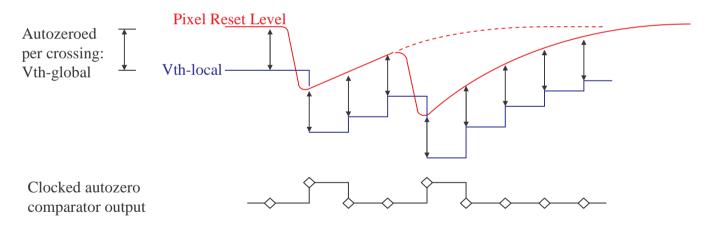

WP3: MAPS Status

- Three main areas of work
 - Sensor design (RAL Technology)
 - Sensor simulation (RAL PPD)
 - Physics simulation (Birmingham and Imperial)
- Scope
 - Two rounds of MAPS sensor fabrication
 - Thorough testing on the bench
 - Beam test for the sensors from the second round

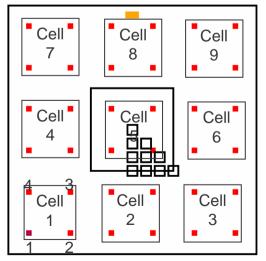

Sensor design

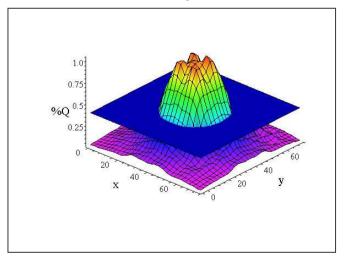
- Coming to end of feasibility study
 - Now need to start actual design for first round
 - Many design details still undecided
- Will have four variants of pixel design on first sensor
 - Each is a 64×64 array of pixels, control/readout is common to all



Some of the variants

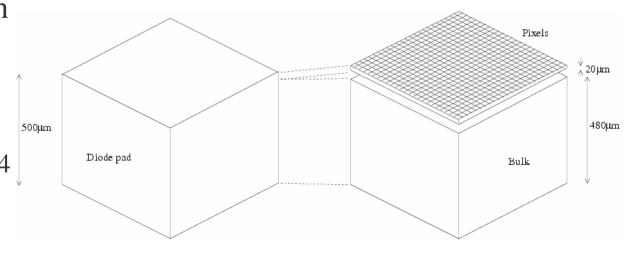
- Pixel memory storage local or clustered?
 - Originally assumed local but more memory-efficient to centralise

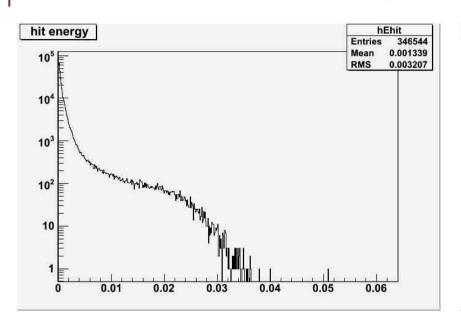

- Comparator type fixed or tracking?
 - Tracking more complex; better for drifting pedestal or two hits close in time

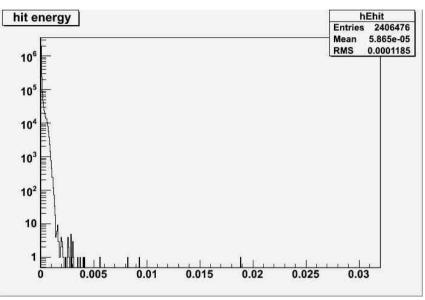


- Number of charge collection diodes per pixel?
- Pixel reset: explicit or charge leakage?

Sensor simulation


- Two main aspects
 - Provides guide and interpolation for sensor design
 - Provide efficiency and crosstalk response for physics simulation
- Must be verified against real sensor during test period
- Sensor being simulated in very fine detail
 - $\sim 75 \times 75 \mu m^2$ sensor area fully modeled
 - Simulate diffusion of charge deposited in small $5\times5\mu\text{m}^2$ volumes
 - Full simulation of each variant can take a few days!




Physics simulation

- Slow start due to late arrival of RAs
 - Now with Anne-Marie and (particularly) Yoshi, coming up to speed
 - Currently working on physical implementation of simulation
 - PFLOW and physics studies must come later
- Main issues have been how to handle the 10^{12} pixels
 - More pixels than can be stored in a 32-bit integer (2×10^9)
 - Cannot do anything per pixel; e.g. one int each = 4TBytes!
- Organise simulation for ease of comparison with diode pads
 - Allow post-GEANT4 digi step to be done either for MAPS or diode pads

First results from GEANT4 look sensible

- Ratio of energy deposited in MAPS/diode pads = $(3.04\pm0.10)\%$
 - Agrees with thickness ratio used here; $15\mu m/500\mu m = 3\%$
- Digi step not yet running
 - Wanted to implement diode pad digi first
 - Stalled due to lack of decision on structure and format of digi output
 - Issues with pixel numbers, etc, being tackled

Preliminary Design Review

- RAL Technology follow ISO9000 QA system
 - Formalised set of reviews and documentation
- Change of project from feasibility study to design requires review
 - PDR this afternoon from 2-5pm
 - Two external reviewers, as recommended by OsC
- Significant amount of documentation generated
 - Has revealed several misconceptions, missing pieces, etc.
- Helped define exactly who will do what in testing phase
 - OsC commented time allowed is short
 - Need to be well prepared and organised; this is definitely better now
- One concern revealed is that design schedule will be very tight
 - But have no schedule contingency later
 - Must prioritise design features and implement most important first
 - Potentially only implement some in the second round

Summary

- Sensor design moving to implementation phase
 - Design parameter space has narrowed but still many options
 - Concerns on schedule so need to prioritise; must keep a close eye on this
- Sensor simulation is progressing
 - Stalled recently due to technical limitations of PC farm; fixed soon
 - RAL PPD may shuffle money to get RA ~6 months earlier than Apr07 plan
 - Would contribute to sensor simulation verification tests using laser system
- Physics simulation is in initial phase
 - First implementation using GEANT4 working in LDC simulation
 - Just starting to provide results on expected pixel occupancy to guide design
 - Next step is LCIO digi; application of efficiency, crosstalk and threshold
 - Physics studies are some distance off yet
- Reviews can take some effort but can be very useful!