Beam properties for run 230101

Paul Dauncey

Some basics

- Layers numbered 0 (closest to ECAL) to 3 (furthest)
 - CERN data will have no hits in layer 3
- Alignment constants defined as:
 - $\mathbf{x} = \mathbf{v}_d \times \mathbf{t} \mathbf{x}_0$ and similar for y
 - Hopefully x_0 will not change even if v_d does
- Values of x_0 determined from run 230101 by defining the coordinate system as the beam in this run
 - But actually measure TDC time peak
 - $x_0 = t_{peak} / v_d$ so values depend on drift velocity
- I estimate for "good" hits the peak values in each layer:
 - X t_{peak} = 1310, 1116, 1183, 1020
 - Y t_{peak} = 1209, 1165, 1113, 1055

Extrapolation from beam origin

- Project forward from -9185mm in MC
 - Compare with truth hits in the drift chamber
 - No beam spread (as MC), no intrinsic resolution
 - Allows measurement of scattering correlation matrix
- Add on intrinsic resolution per chamber = 0.6mm
 - Uncorrelated addition of 0.36mm² along the diagonal of matrix
 - Gives matrix to use for linear track fit back to beam origin
- Fit data tracks in run 230101 using this matrix
 - Fixed all drift velocities to 0.03mm/ns
- N.B. Exactly the same as method needed for "normal" track fit but using gun rather than fake layer...

Check quality of track fit

• Probability from χ^2/DOF

- Large peak near zero; wrong combinations (?)
- "Good" tracks have flat distribution J
- Note, only about half the events have "good" track; using file from George with only one TDC hit/chamber/event (selected how?)

Sensitivity to intrinsic resolution

• Tried 0.4mm, 0.8mm intrinsic resolutions; 0.6mm best of these

Apparent beam spread

Apparent spread includes track errors

- Can only be estimated from track fit
 - Flat probability gives some confidence they are reasonable
- Apparent error matrices in x

10.29	-0.00143
-0.00143	6.73e-07

• Track error matrices

9.70	-0.00157
-0.00157	2.93e-07

• Difference = beam shape

0.59	0.00014
0.00014	3.78e-07

$$\sigma_x = 0.8 \text{mm} \sigma_{\text{tx}} = 0.6 \text{mm}$$

and y

10.40	-0.00127
-0.00127	4.71e-07

9.70	-0.00157
-0.00157	2.93e-07

0.70	0.00029
0.00029	1.77e-07

$$\sigma_y = 0.8 mm$$
, $\sigma_{ty} = 0.4 mrad$

Not a huge position-angle correlation; could be ignored

Beam properties

Redo with different drift velocities

• Drift velocity = 0.030mm/ns

0.59	0.00014
0.00014	3.78e-07

0.70	0.00029
0.00029	1.77e-07

• Drift velocity = 0.027mm/ns

-1.18	0.00038
0.00038	2.57e-07

-1.11	0.00051
0.00051	0.94e-07

• Drift velocity = 0.033mm/ns

2.53	-0.00011
-0.00011	5.10e-07

2.57	0.00008
0.00008	2.68e-07

- 0.027mm/ns gives unphysical result
 - Track error is bigger than measured spread of beam position
- Beam size changes strongly, angle spread is less sensitive