Tracker alignment issues

General method

- Go through rec_v0406 files for CERN 2006 and 2007
 - Find tracking hits in each x and y layer; chose random one if more than one
 - Find ECAL hit in first layer (if any) with largest energy
 - Find average position over run of each layer and ECAL hit in both x and y
 - Find correlated spread of these values
- For each run, have two (x and y) sets of averages and "error" matrices
 - Use these to get alignment
 - First look at averages; spreads are harder to interpret...

Correlations of average x values, 2006

- Good correlation for ~all runs
- Implies motion is due to beam, not tracking
- Means alignment was constant for all of 2006
- Average position has shifted between Aug and Oct
- How to define x=0?

Correlations of average y values, 2006

• Same conclusions for y

Correlations with ECAL in x, 2006

- Looks reasonably stable
- Unexpected; ECAL was moved downstream by ~1.5m between Aug and Oct
- Note, ECAL position is not centred on zero

Correlations with ECAL in y, 2006

- Not so good; clear shift between Aug and Oct
- Relative ECAL y position will need to be adjusted
- Also difference in slope...

ECAL angled runs

- Some runs had ECAL tilted from normal incidence
 - How to get this information?
 - Reconstruct angle from z dependence of hits for differing x

ECAL angled runs (cont)

- Correlation of tracker and ECAL is washed out if using the angled runs
 - Implies alignment of ECAL not correctly compensated for tilt
 - Have not used these runs in previous plots

Extraction of alignment values

- Need constant (t_0) and linear (v_d) values to convert TDC time to position
 - $x = v_d(t-t_0)$ and similarly for y
- Nominal beam line is supposed to define x=0
 - Hence t₀ is "average" time of TDC hit
 - Take some value in centre of range for all of 2006?
 - Take two values; one for Aug and one for Oct?
 - Semi-arbitrary but either will require ECAL to be repositioned
- Use ECAL as fixed "ruler" to give absolute scale of v_d
 - Use correlation of ECAL and tracker averages
- But... does not nail down system uniquely
 - Does beam move because of angle or position?

Beam shift vs tilt

• Assume beam motion is mainly angular

 Averages move depending on z position; ~5% effect

Typical fits, Aug 2006

- Values assume beam position, not angle, varies run-to-run
- Fits are limited in statistics
- Note: if beam was very stable, this method would not work

Typical fits, Oct 2006

- Slope values differ, even though tracking correlations are stable
- Fit for y does not look good

Correlations of average x values, 2007

- Good correlation for ~all runs
- Alignment was also constant for all of 2007

Correlations of average y values, 2007

Correlations with ECAL in x, 2007

- ECAL motion; 3 or 4 different lines
- Would need to fit to each
- Lacking statistics; only ~70 runs total

Correlations with ECAL in y, 2007

Using spread matrix

- Try to use spread in each run to cross check
 - Measured matrix is in terms of TDC times and ECAL position
 - The v_d parameters convert measured time spreads to position spreads
- Spread arises from three sources
 - Event-to-event beam spread around average
 - Scattering in material in beam line
 - Intrinsic position resolution of the tracker and ECAL
- Adjust parameters to best match measured matrix
 - Need beam energy to know scattering
- So far not successful...
 - Tracker-only matrix works well but no "ruler" to fix v_d precisely
 - ECAL spread seems physically too small; maybe chopping off spread due to finite size of ECAL?
 - Needs further work...

Basic check of nominal beam energy

• Check average energy deposited in ECAL in each run vs nominal beam energy

Basic check of nominal beam energy

• Check average energy deposited in ECAL in each run vs nominal beam energy

Comments on FitConstants

- Currently has two scattering matrices for use in fitting
 - 6×6 matrix for forward track fit; four tracking layers plus beam spot position and angle constraint
 - 4×4 matrix for backward track fit; only four tracking layers
- Alignment matrix needed here is another scattering matrix
 - Needs backward track fit matrix plus ECAL position (and maybe in future angle); 6×6 matrix
 - Daniel has been calculating these from MC recently
- Choice
 - Keep alignment matrix elsewhere; painful to ensure consistency
 - Enlarge FitConstants to have two 6×6 matrices; not backward compatible with checked out code
- Also, do we put in single scattering matrix and scale by $1/E^2$?
 - Requires nominal energy to be absolutely reliable when running jobs
- Need to decide before we start to put Daniel's values in the database

Conclusions

- CERN 2006: tracker seems stable in Aug and Oct
 - Alignment values still uncertain at 10% level
 - Using ECAL depends on ECAL also being stable; maybe not?
- CERN 2007: tracker is again stable
 - ECAL is not, so needs more work to extract alignment
- This method needs assumption on how beam moves run-to-run
- Cross-check using spreads
 - Need beam energy reliably; always get zero for 2007!
 - Need to understand position spread in ECAL