Used all ECAL+HCAL runs in rec/rec_v0406, Run33xxxx_rec.000.slcio Total number of runs: Period 5 91 runs With beamData: Period 5 90 runs With normal incidence: Period 5 42 runs With good fit to spread matrix: Period 5 X 26 runs Period 5 Y 19 runs Gaussian fits/estimates to drift velocities X Layer 1 0.1375 +/- 0.0007 X Layer 2 0.1419 +/- 0.0009 X Layer 3 0.1352 +/- 0.0006 Y Layer 1 0.129 +/- 0.001 Y Layer 2 0.138 +/- 0.001 Y Layer 3 0.132 +/- 0.001 Cross check with mean shifts, correcting for z differences X Dz1 = 60000- 43.5=59956.5, Y Dz1 = 60000- 14.5=59985.5, Dz2 = 60000- 713.5=59286.5, Dz2 = 60000- 684.5=59315.5, Dz3 = 60000-2586.5=57413.5, Dz3 = 60000-2557.5=57442.5 Assuming beam motion is purely angular, then gradient = vdi*Dzj/vdj*Dzi X Layer 2 vs layer 1 measured gradient = 0.95 +/- 0.01 With i=1, j=2, expected gradient = 0.96 +/- 0.01 X Layer 3 vs layer 1 measured gradient = 0.97 +/- 0.01 With i=1, j=3, expected gradient = 0.97 +/- 0.01 X Layer 3 vs layer 2 measured gradient = 1.02 +/- 0.01 With i=2, j=3, expected gradient = 1.02 +/- 0.01 Y Layer 2 vs layer 1 measured gradient = 0.86 +/- 0.15 With i=1, j=2, expected gradient = 0.92 +/- 0.01 Y Layer 3 vs layer 1 measured gradient = 0.92 +/- 0.13 With i=1, j=3, expected gradient = 0.94 +/- 0.01 Y Layer 3 vs layer 2 measured gradient = 1.09 +/- 0.15 With i=2, j=3, expected gradient = 1.01 +/- 0.01 Alignment t0 values X Define "nominal" beam axis to correspond to Layer 1 t0 = 50 TDC units From Layer 2 vs Layer 1 means, Layer 2 t0 = -6+0.95*50 = 41 +/- 1 TDC units From Layer 3 vs Layer 1 means, Layer 3 t0 = -13+0.97*50 = 36 +/- 1 TDC units Cross check From Layer 3 vs Layer 2 means, Layer 3 t0 = -6+1.02*41 = 35 +/- 1 TDC units Y Define "nominal" beam axis to correspond to Layer 1 t0 = -28 TDC units From Layer 2 vs Layer 1 means, Layer 2 t0 = 3-0.86*28 = -21 +/- 6 TDC units From Layer 3 vs Layer 1 means, Layer 3 t0 = 15-0.92*28 = -11 +/- 6 TDC units Cross check From Layer 3 vs Layer 2 means, Layer 3 t0 = 12-1.09*21 = -11 +/- 6 TDC units