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THE LINEAR ACCRLERATOR STRUCTURES WITH SPACE-URIFPCRM QUADRUPOLE POCUSIHNG
T.M,Kapchinakij and N.V.Lazarev

Introduction

The linear accelerators with ppace-uniform
quadrupole facusing do not require high-vol-
tage injector and aliow %o have high capture
efficiency without any preliminary bunching.
Wide capture region and large acceptance
allow to get high valusa of current limita.
The unite with spece-uniform focusing are
very effective ap an initial part of high-cur-
rent linear accelerators for medium and high
snergies.

Description of operetion

In linear accelerators with drift tubes
the quadrupole focusing pystem has the stren-
gly marked space periodicity: either the po-
ies polarity of guadrupole lenges or the geo-
. metry of polea alternates slong the axis. But
with time altermating voltage there may be
used the quadrupole system of the focusing
electrodes which is uniform along the accele-—
rator azis. Such syetem is shown in Fig.1.
The magnitude W.=2Wa is the voltage amplitude
vetween itwo adjacent electrodes. Az the slec-
trodes are supplied with HF voltage tl cosw €,
a0 the particles are sequentially expaged to
fields with aiternating gradient slgnse while
they are travelling along the axia. In the
space-uniform system this effect leads to the
quadrupole focuging.

If the distance between cpposite electrodes
of the same polarity in four-wire line wvaries
periodically along the axis, there appears n
lengitudinal accelerating component of the HF
field., The space period of the variation must
be equal to the synchronous particle path
during a pericd of the HF, The phases of dis-
tance changings in the mutually perpendicular
planes have & helf-period shift, The electric
field potential at the axis undey thesae con-—
ditions is modulated with period f2 , that
create reaonant accelerating effect. Fig.2
shows round electrodes of alternating dimmster
with conical traneitions; there are given a
pection of electrodes by the plane passing
through the longitudinal axis and three crossg
sectiong with the co-ordinates F=-¢f ;05

2f2 . The longltudinal sxls shows veriable
quantity k,Z , where k,- im the wave number
of the sceelerating wave: ky=2e/f) . The func-
tion defining the electrodes diameter lm odd
relatively to the mection with exact guadru-
pole aymuetry. The gections of the modulapted
four-wire line consisting of the electrodes
of Ncrank-shaft™ type are shown in Fig.3.

HF reacneiors

AY TesonaLors

The HF supply of the four-wire lina may be
fultilled by & resonator with longitudinal
magnetic field. Fig.4 phows possible types of
resonators: the four-chember resonator and
double H-rescnator?, The H-resonator, due to
prepopition of ita inventor ¥.A,Tepljakov,
one calls a congtruction, the main regonating
alement of which is a cylinéer with longitu-
dinal gap along its wall; the electric fleld
ig mainly concentrated in the gap.
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In Fig.4 are ahown the directions of longity
dinal magnetic field and plectric lines of
force in the region of interanction with the
beam, The ahown secticna correspond to the
planes with exact quadrnpole symmeiry. The
magnetic fluxes connection takes place at
the bottoms of the resonator, The intercham
per partitions do noi reach to bottome. The
firat Teslized wnits of the accelerator witl
space-uniform focusing were made as double
Horesonator?. At the first stage of constru
tion it meemed fo be technologically simple
apd more relisble then the four-chamber res
nator, Nevertheless the four-chamber reaocns
tor have some advantages in comparison with
the double H-resonator. The symmetry of fou
chamber resonator corresponds 1o the quadru
pole mymmetry of electric field in the regi
of interaction with the bemm. This gimplifi
the adjustment. The four-chamber regonater
g 1ittle leps in dimensiona anpd has amaller
HF losoes then the double H-resonator. In
concluaion in four-chamber resonator it is
much simpler to vary the shape of the modu-
lated electirodes. The technolopgical diffia
tiea of the four-chamber resonator may be
auccessfully solved.

let us define the dimtributed ocpacitam
per unit of the foup-wire quadrupole line

by the equelity ya dle
TGyt

where J - the full conduction current comi
up to one elecirode. Lot ua neglect the ma
netic field in the region of the interacti
with beam. Then the redius R of tre infin
tely long four-chamber regonator with thin
partitions will be defined by the egquation

2:6R)  J(ke) + F ke Fa (k2)
KRB T, (ke) + 5 kea Ny (ka) i

a~- interaction region radius; k= 2a/2. 1
value of the magnetic field in each chambt
only slightly depends on co~ordinatea, As
ming the value of the magnetic fleld in t}
chamber to be constant snd p<« R , one can
auch mpproximate dependence between the w
length of the guadmipole mode of oscillat:
and the resonator radiuse

=R /adCu
2E,
For the double H-resonator with the radiu
the resopating cylinder R; and the radiu
the shield cylinder K, under the same Aapp
ximation

A= 2Ry /B [1- 2]

The expreaaione (2,3) are the more accure
the bigger the distributed capacliance pt
unit., e resieisnce losaes of HF power |
unit length of the reaonator may bz evall
by the sxpreasion

p=fUi fA (@l

where 6 - the epecific conductivity of
nator walle {(ohm!m”

Wt/ m,
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o (k) + %—%‘k“ 3, (ka) ;
(ke) + %_g&_ka. AL

8 Reed /10, The calculated valum of remis.
¢ lossea in four-chamber resonstor undex
dm and ¥ = 300 XV are approximately

Wt/m; but as it is lmown from experience
) Alvarez resonator, the real remistance
28 may be 2-3 times more than caloulated,

[ Accelergting and focusing electrodes

et us consider the four-wire quadrupole
» At guasi-stationary approximation the
trie potential in the region of the axis
8 the beam interacta with the field may
resented as

(4, 2,8) = Uo (14, 2) cosw £,

function of the amplitude distribution in
on cese ia

42)=- SR+ LR 9y sin bz
function
£(2s+1)

(114’)=:’Aos'2’ 1'-052(25*'1)""

8 the law of potential dimtribution in
ection with co~ordinates k2 =y
Cy1,2,...), where the field has accurate
Tupole symmetry. The coefficients R
he harmonics of the epace medulation
Dotential are defined by the ssries

L (2, )= g’ A Iy, [(2&—1),(43]605 Ys¢ N

Tre the modified Bepsmel funciion, The

try of the field is taken into account
xprecpions (5 — 7), The first term of the
(7) describes the axiel symmetrical
ponent of the potential; the reat of the
o8 gives the compoments with the aymuet-
of higher order,

8T of the axis the eleciric field is of
& mode wave. The porticms of particle
are being gained along each 1/2«pA of
Iat to be the field phase at the

t when the particle im in the Plane with
t guadrupole symmetry, Then with the

t 3egree of approximatien for any partioclae
kz+y ., Let us sspume that during acce~
tion feriod the transverse co-ordinates
articles remain aprroximately constant.
inerease of the particle energy mlong the
leration peried L =4 pA in this case i
fied by expresaion

o L
EEuL Z(EMI)F-. (%'P)ICOS (En—l‘)k.,z cog(kZ +T)J3)
. "-‘llu:::w::II g
AW-—-‘ -geu‘_a('z)lp)wg;?_ (8}

E can see that only the first hermenic aof
®pace modulation of potential glivesn the

(6)
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energy increagse, The wvaiue
it
= —,F.F}(O)= 1‘("Alo
is the analegue of the transit time factor of
the particle moving along the axis and definea

the accelerstion efficiency, For the particle
moving along the axis

aW=ell, Tengp (9)

The transversal cmcillations of the parti.
cles in nonrelativistic approximation are
described by the equation

%s éi:g: -_:f‘coswf +

37 2K sin (2a- ke cos (ki2+ @) 1

Assuning that the balf of the period of the
space electrode medulation is much shorter
than the transversal oscillationa wavelength,
it i= possible to change the second term in
Bquare brackets by the value averaged for the
half of the period . Then the last equation
may be simplified

2, U, [l 4 28 g
Gt W st - L IS 7] (10)

The main quadrupole focusing effect is defined
by the quadratic term of the meriem (6}, The
other components give rise to the beginning
of the various nonlinear effects. Let us con-
fine ourselves with the linear approximation
to the quadrupole component of the electric

field asgsuming 2.2
(@) eos 2. (1)

ﬂ(z,(p)n 2.
later on the value a we will Tegard am mini-
mum distance from the axis to the electrode;
this distance define the aperture of the
channel and accodingly the acceptance of the
channel. The coefficient = depends upon the
depth of modulation of the slectrodes. As it
follows from the equationa (8,10) the mccele-
ration and defocusing of the articles for a
first approximation depend on{y on the func-
tion £ (=,¢). The paraxial particles are for-
ced mainly by the cylindrically symmetrical
components of the function F ; 8o we can
agsume yT

Be9= 7 lo(kiz)
The modified Bempel Tunction of the zZero
order with amall values of the argument doea
not differ much from unity, Usually it ise
posgible to assume Lka)=1, neglecting thue
the longitudinal movement dependence on the
transversal oecillations, But the accelerstor
with space-uniform focusing allaws to ume the
rarticles injection with rether iow anergy.
The wave number ks= 2%4a under thesme conditions
may turned out not very small and the depen—
dence between longitudinal and transverse os-
c¢illations will play ite part 4.

The accurate calculation of the coefficia
ents T and ® requires the numerical solu-
tion of the electrodynamice equationa for the
electrodea of concrete shaps, Bui for these
coefficients it ip sasy to get approximate
expressions, suitable to choose the main pArg.
metera of the accelerator,

The pleces of elsctrodes with conatant
gectian in Fig.2,3 c¢orredpond to the drift
tubes and transitions between the adjacent
pieces of constant section to the accelera-
ting gape. The exact solution of the

(12)

3463



boundary-value problem for the electrodes of
constant saction may be achlieved if the elec~
trodes sections are approximated by the field
equipotentials of four linear wires with gqua-
drupole symmetry of charge., Let us define the
depth of the electrodes modulation m as a
ratio of the maximum distence from the axis
to the electrode to the minimuwm distance. The
equipatentiale coinciding with the electrodesz
surface are defined by the three parameters:

the aperture radius & , the depth of modula-

tion m and the formfactor ¥ . The curvature
radiug of the electrodes at the nearest to
the axis pointa are corresporndingly (Fig.2,3)

R @ . R ma
= T8 gty ™y gm? p2y (13)
1+ = sk 1+ 47
where 4 is the distance from the axls to the
electrode at the plane XZ0Z, Under V £o.1 the
sections of the electrodes are near hyperho-
lic and under V2 0.25 are nesr circles with
the Tadli Ry, Rv. The distributed capacitance

of the four-wire guadrupole line is Ch--%%l

Under o<« P one can essums the Tomritudinal
compenent of the field at the channel axis ta
be equal zero at the electrodes pieces with
conatant section. Then the expresgaion for the
acceleration efficiency may be obtained

= 1 siam=g f+p
T=ay Se™ "0 (14)
where o = S/p); p= r::i:: thV ;

8 is the transition length between the
pieces of elecirodes with constant section.
The efficiency of focusing in modulated
four-wire line consisting of interchanging
pieces of constant section electrodes are
approximately defined by the expression

_ 4 _5h2v m?s 4 .
= Fo (ksa9) v mi+r2mich 2V+ { (15)
where a,= a(m% 1)/\(2 (m2+ 1) . In a uniform
line m=1 and T =0;the acceleration is abaent

but the focusing effect is maximum. With

growth af the moduletion depth the efficiency

of acceleration is inereasing, but the effi-
ciency of focusing is decreasing.
Prom the expressiona (13) it follows that

undar
sh 'V > 1/%:% (16)

we have R, >Ky; under m < 3/2 the expression

{16) roughly representa the cylindrieal eleec~
trodes with conic turnings (Fig.2): but it is
nevertheless highly rough as under this
aspproximation the unequality a+R,<ma+ Ry

always takea place,
If the unequality
{+m?

sh.V< B {(17)

ie true, then Ry<Ry. This case corresponds

to the electrodea of the "crankehaft" type;

the line electrodes redii are approximately

proportional to the distances from the elec-
trodes to the axis (Pig.3). In the case (17)
vpually is P41, so the expression {14) may
be pimplified;:
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In contrmst to the case (16} in the case (17
the acceleration efficiency has weak depep-
dance of the parameter V and the focusi
gquadrupcle field is more linear, Calculatign
of the boundary effect in the last cmme giyg,
the approximate equality

o A thV Tsinre oA
T L ten V= nT,

where &y= & /2m%/1+m? . The condition

Cu = const { V = const) muat be met aiong
the whole resonator. Under the changing mody
lation depth this condition definems, with ge
cordance to the egualities {13), the raties

Rxfa and '%n. In the parta of the acecelerato

with conaztant modulation depth the paramster
V may be choosed under the condition

2 ) . _ _ma
shZ¥= 1;:)' it givea Ru=Ry= 0 r

Beam dynamica

Tt is more comfortable to study the longi
tudinal cscillations of the particlez in the
device with space-uniform focuming in caneni
cally conjugated variables g=2-25, p= -,

The phase difference of the equilibrium and
nonequilibrium particlem is Y= -k, 5. The
replacement of the equations in finite gdiffe
rences by differential equations does noi ad
appreciable error in spite of the low injec-
tion energy as it iz advantageous to choocas
the partial increase of the enerzy (9) at th
beginning of the accelerator rather small, &
it will be ahown later. The longitudinal oe-
cillatione equations may be drawn from the
equality (8} directly, The Ilamiltonian des-
cribing the longitudinal motion of any par-
ticle relatively the aynchronous one ia

Lk = in (ke s
H(z,p =21Pz+ %[ﬁﬁ“s‘f‘s LGy sin (kg i

The esquation of the amall longitudinael emecil
lation is

i AT Peles O G =4
i e Lot = e e 1],
whera o= wae,{LLTanl'tPsl/ﬁmn Ut

The particle which is moving mlong the acce-
lerator axis performs emall longitudinal oe-
eillations with frequency £2 ., Let now the

particle to have finite amplitude of trens=-
vera coecillations., The aversged motion of
thie particle may be presented ma ‘=R i,

Prom the equation {19) it follawe that the
rather strong coupling of tranaversal and
longitudinal oscillations givem rise to the
periodicel modulation of the small longitudl
nal oscillation frequency and to appearanch
of an external force, Let um at first consi-
der the equation (19) without its lefthand
part. The coefficient attached to is an
even periodical function of time with freg-
uency 2£1y and may be represented as s Fouris
gerien

T, ko Reos 2yt) = L2(55)+ 257 J2(%0) cos2nmnt
n=f
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(18)
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i__ [In(k,':.) - j_] ; (19) _

- .kflffpd

- . 2
: m‘-e,LLLTsml‘Psl/ﬁmoU"s
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‘requency £ . Let now the
finite ampiitude of trans=-
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-1 (19} it follows that the

ipling of itryanaversal and
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irce, Let uwe at firet conei-
(49) without its lefthand
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"* be represented as s Fourier

ED4 25 () s2nant

e coefficients of the series are decrensing
gt and this mallows {0 confine ourselves
th Mathieu equation., The expressions

n (B >1EED+E (%)
2 (& (Y- I (%)

rregpond to the two first stability regions
the Mathieu equation solutien. The first
ndition will be completed for all possible
plitudes of the iransversal cscillations,
it 1s compleied for the mazimum amplitude.
¢ pecond condition is true if it 18 correct
r the particle moving along the axis. Let
assume the maximum amplitude of the trang-
rasl oscillatione to be equal to the aper-
re radius of the channel A , Then the para-
trie stability criterion may come to one of
0 expreasions

k 2 syt foi i
L1402 2 rkqa 1 ) : (___)

(25 2ED L () (m)<L

%t ie possible to meglect the frequency modu=-
jation outside of parametric rescnance regi-

ine.The equation of the small longitudinal
cillations under theame aimplificationsg is

: I}g +_n’I:(-‘%R-)§ =
: 2 2/k4R 27k R
[ 1+ 2L (e 200t ]

JThere is no any external resonances under
2o, 0], ( I—‘f,-‘i) Thia condition for any
gg8ible tranaversal amplitude leasde to one
; . L 3 ko
inequalities: m>2 ar E_‘('Q/Io(%)

fhen the terms of simultanecus absence of the
ixternal and parametric rescnances are

i 0 2 el
A qea B T g
L ST et

e freguencies ratio J}ébacorresponding to

he stable longitudinal oscillations must be
n one of three regione confined by the
xpreegions (20), Usually one can succeed in
tisfying to the firat of theae expressions.
The parameiric coupling mey lead to the
sonant rise of the longitudinal cacillations
ot only in the accelerafor with space-uni-—
orm focusing eystems, but in any other acce—
erating syatem allowing the low injection
nergy, in phese variable focusing syatem for
xemple, The conditions of the longitudinal
gcillations etability (20) mre correct to
gll the systems, where it ia necessary to
ake into account the degrees of freedom
cupling.
The Hamiltonian of the longitudingl oscil-
ations for particle with the amplitude of
he tranaversal oscillations R may be repre-
ented outside of the resonant regions ea

(6P =35+ LT [igscos g, — 1o(54 )sin s ]

i

¢ small longitudinal omcillations frequency

5 Q-I,('if) . Ag the small longitudinal
#cillation Trequency depends on R |, the os-
1l1lations of particle groups with different
plitudes of the transversal oscillations

are noncoherent. The two effects - the nonli-
nearity of the melf-focusing forces and the
longitndinal oscillationa dependence on the
transversal onea lead to a relatively faat
£illing of effective pheee volume on the lon-
gitudinal co=ordinstes plane with the repre-
senting pointe of the beam, which had at Ffirat
the zero volume.

The center and the saddle co~ordinates may
be defined from the equation

ces (9+ ¥) = cosps /12 (555

For the center co=ordinate 4% we have

S T P
‘H=[i' Tikek —J“ §¥Ps

NG
The center co-ordinete remains a small velue
for particlee with any poasible amplitude of
the transversal oscillations. Heally the value
of the equilibrium phase at the injection in
the accelerator with the space-~uniform focu~
8ing is usually chosen near to 90° and
fetgws| & 1; later on the difference Il-4
rapidly decreases as with energy growth of
the particles the argument of the Beesel fun-
ction decreases. The detsiled eatimations ¥
show that the phase stebllity region of the
outlying particles becomes a little wider and
alightly moved to the positive phases side in
comparison with the particles moving along
the exiaz. The difference of the movement inva-
riables for axial and outlying partieles with
low energies and high absolute values of tha
equilibrium phaee ig unessentisl, As far as
the particle energy increases the movement
invariables draw nearer even under decreasing
of the abaglute value of the equilibrium
phage, Later on while anelyaing the bunches
movement let ua conaider all the particles to
be axial and J,(k%sl.

The longitudinal movement of the particles
in the accelerator with space-uniform focusing
under conatant equilibrium phase does not
differ of the lonpitudinal movement in other
ayatems wliih paralleled accelerating gepa.
Energy increase of the equilibrium particle

along the acceleration periocd 4 -é A ie
conetant:
Awsr_'e,uLTcm(f's
The rate of acceleration decreases adimbati-
tally as the particles energy rise?
M 2o () (e S
dz B dZ b\ Wo

The phaase oscillations are stable under the
auch index. The amplitude of the small phase
ogcillatione dec¢reages plower than in an
Alvarez type accelerator and the amplitude o?

the particles momentum faster: PeWy ,‘—A;'-'W;

The length of the resonmtor £ to accelerate
particles from the energy W, to the finsal
energy Wy may be eotimated by the expression

po iz Mo[(}’_g 3 (i)”z} £omma
I SR [ £, ) o
The use of the Biructure with the space-~
uniform focusing givea possibilities to dec=-
reade the injection energy and to incresse
the intensity of the accelerated beam, The
acceleration period £pX , equal to the half
of the electrodes modulation peried, may ba
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rather short, This allows to begin accelera-
ticn from low energies, From the equation {10)
it followa that the guadrupols focuaing in
apace=uniform system does not depend of the
particle phase and if the epecific accelera-
tion is emall enough the frequencies of the
traneversal cacillations have weak coupling
with phases of the particles. By the fixed
depth of the electrodes modulastion the par—
tial incremse of the energy im constant. Then
the margine of the acceleration per length
unit ig under the low enrgies relatively
large. This allows to have the equilibrium
phage near to 90% at the beginning of the ac-
celerator., The bunches follew clome to each
other and the mean current is almost equal to
the pesk one. In this system it im possible
such adiabatic changing of the parameters
along the accelerator axis with the energy
rise, when the distance between the bunches
inerensen, but the peometrical dimensions of
the bunches under this process remain constant
and therefore the density of the space charge
remainsg constant also., These features of the
aystem with space-uniform focusing allow to
get high currents under low injection energy¥,
The Hamiltonian (18) ip not the invarimble
of the motion, becouse the parameters T, ¢,
ky are the functions of the dimtance, Never—
theless the curves H=wnst apre the phase tra-
jectories under adiabatic approximaticn.
These trajectories are changing their forme
slowly, the area anveloped by the cleosed tra-
Jectory being constant. Let ue sssume the
conditions of the accelarator parameters
changing along the axis to ensure the cong-
tancy of the bunches length and conservetion
of the charge density dietribution aslong the
whole length of the bunch. Simultaneously we
shall proceed from the assumption that the
whole ares enveloped by the separatrix ias
fully filled by particles after injection.
The phase trajectory of the small oscilla-
tione ia described by the ellipmis equation

2 2z
B dimt

where EL=I22. According to the theorem of
the adiabatic invriable PZ = const. It is
clear from this that the condition Q= conat
or

Tsin 1ps
A

engures the conservation of all the phase
trajectories with linear approximation. On
that score this guarantees the conservation
of the charpe density distribution in the 1i-
near region inmide the separatrix. Let then
P. to be the phase longitude of the separa—
trix. The velue 9. iz connected with the
equilibrium phase by the equation ¥

'&, ?:-—Si'fl«?c,

The graph of ® as a function of the equilibw
rium phage for the whole length of the inter—
val from zerc to-~%2 ie shown in Fig,5, The
geometrical length of the mepsratrix is

Zo= 2P, |

If one decreasea the eguilibrium phase along
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the accelerator axiz in such a way that the
value 5% will remain constant,the lengtp ot
the bunch will net change, The half of {he
vertical dimension of the separatrix depengg
on the length of the separatrix aa

P = 2aZ. %),
The funection
Y

3 ()= 1%: 1- ?;]E

is shown in Fig.5. If f1= const and Elnconat
then the verticel dimension of the meparatriy
is algc almoat congtant. In particular, if

one puts =3, fy,= estd 92 the consataney

of R is quite strict: %,=i/83. At the big va-
luee of the equilibrium phase, up to ¢ = -1,
the function ¥ deviation of the pointed ya.'
lue does not exeed 5%. So the constant chargs
density distribution remaina along the whole
length of the bunch with practically enough
sccuracy. The conditions of the quasi-atatig.
narity it = const, Z.= conet simple defina
the dependence of the acceleration effective-
ness and the equilibrium phese on the current
energy of an equilibrium particle Wsg . Thege
paramétera are connected with the final velyuss
of Ty, ¢ + Wy by the expreasicns

Wy (W, sS4 s
)=o)\t 5 TR =TS
The acceleration rate in the structure with
guaBi-atationary bunches is defined by the
equationw o
A dWs 2 (ONT
We )_z_'_z(m) T2 (45), (21)
where F,(¢) = ?c(ps}/HgtpsLThe funetion F,
plot 1a shown in Fig.5; tha function F, may

be represented by the m‘;n:'ies"r P ¥ pacl
2
_3._.;14.0_3(&)4-0_09“(3))( o.029( %)+, |flox
T 3 3 a £
2 feci
The length of the accelerating resonator with Erem:
quasi-atationary bunches may be found integ- But
rating the equation (21), Let um note that Tn «
the resonator is relatively short in spite of f eecl
very small acceleration rate at the beginning, ¢ dime
aa the partial energy increase grows fast due Toct
to the growth of the acceleration effective= whez
neses. The
If to take into account the expression (/%) rep:
(11), the equation {10) may be represented as
Z 2 ' a.
£ (@ [Koswt - % 5ne[x=0 ) | %
d¢? ~ whe:
The first term in the sgquare brackets definea i
the effect of the space~uniform guadrupcle 9
focuging, Am 1t was noted eerlier, in contrast |
to the HF fecusing in the epace-perioedical lfThe
atructures, in thia case the focusing term ' dBo
does not depend of the perticle phase. The B fun
aramneter ’
7 2. el (D) ,
= Yme? L& (23 The
determines the stiffness of the focusing the
channel. The defocusing faclor % may be
wriftten aa i T
Yoo EE G (24)
e ™ 2Ws
The defocusing factor is not zerc at those
cased when the distance between the electro-
dea ip modulated (T ¥ 0) and the effect of
1
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i ihe case (16} in the case {17
-1 wfficiency hae weak depen.
» mmeter V' and the focuai

. 18 more linear. Caleculatisy
elfect in the lasi case givey

E eguality 5
thV ginee  mi-o

V o m‘+f,

! B+mZ . The condition

= congt) must be met along
ter. Under the changing mody.
a8 condition defines, with ap.
egualities (13}, the ratios

the parta of the acceleratay
dulation depth the parametep

. d under the condition

_ _ma
it gives Re=Ry= 0=
gan dynamics

- mfortable to study the longi-

lons of the particles in the

. e=miform foeusing in canoni-

variables pm=Z-¥g  pm=U- Uy,

. ense of the equilibrium and
i articles is Y= -k,5. The

he equatione in finite diffe-

. ential equations does not add
-1 in Bpite of the low injeec

t is advantageous to chooga
eare of the energy (9) at the
arcelerator rather small, as
leter. Tha longitudinal oe-
iors may be drawn from the
scily. The lamiltonien des-

©itndinal metion of any par-

; Tf_}, 5 €05 (h— T (k2) sin (k- ‘PS]

the asynchronous one ie

(18)

the small longitudinal omecil-

i__ [In(k,':.) - j_] ; (19) _

- .kflffpd

- . 2
: m‘-e,LLLTsml‘Psl/ﬁmoU"s

:h ie moving along the acce-
orms emgll longitudinal os—
‘requency £ . Let now the
finite ampiitude of trans=-
5« Tha averaged motion of

r he presented as 1=Rmn;’é»

-1 (19} it follows that the

ipling of itryanaversal and
Jlations gives rise to the

iticn of the emall lnngitudi-.

‘'requency and to appearance

irce, Let uwe at firet conei-
(49) without its lefthand
tlent attached to is &n
'unction of time with freq-

"* be represented as s Fourier

ED4 25 () s2nant

e coefficients of the series are decrensing
gt and this mallows {0 confine ourselves
th Mathieu equation., The expressions

n (B >1EED+E (%)
2 (& (Y- I (%)

rregpond to the two first stability regions
the Mathieu equation solutien. The first
ndition will be completed for all possible
plitudes of the iransversal cscillations,
it 1s compleied for the mazimum amplitude.
¢ pecond condition is true if it 18 correct
r the particle moving along the axis. Let
assume the maximum amplitude of the trang-
rasl oscillatione to be equal to the aper-
re radius of the channel A , Then the para-
trie stability criterion may come to one of
0 expreasions

k 2 syt foi i
L1402 2 rkqa 1 ) : (___)

(25 2ED L () (m)<L

%t ie possible to meglect the frequency modu=-
jation outside of parametric rescnance regi-

ine.The equation of the small longitudinal
cillations under theame aimplificationsg is

: I}g +_n’I:(-‘%R-)§ =
: 2 2/k4R 27k R
[ 1+ 2L (e 200t ]

JThere is no any external resonances under
2o, 0], ( I—‘f,-‘i) Thia condition for any
gg8ible tranaversal amplitude leasde to one
; . L 3 ko
inequalities: m>2 ar E_‘('Q/Io(%)

fhen the terms of simultanecus absence of the
ixternal and parametric rescnances are

i 0 2 el
A qea B T g
L ST et

e freguencies ratio J}ébacorresponding to

he stable longitudinal oscillations must be
n one of three regione confined by the
xpreegions (20), Usually one can succeed in
tisfying to the firat of theae expressions.
The parameiric coupling mey lead to the
sonant rise of the longitudinal cacillations
ot only in the accelerafor with space-uni-—
orm focusing eystems, but in any other acce—
erating syatem allowing the low injection
nergy, in phese variable focusing syatem for
xemple, The conditions of the longitudinal
gcillations etability (20) mre correct to
gll the systems, where it ia necessary to
ake into account the degrees of freedom
cupling.
The Hamiltonian of the longitudingl oscil-
ations for particle with the amplitude of
he tranaversal oscillations R may be repre-
ented outside of the resonant regions ea

(6P =35+ LT [igscos g, — 1o(54 )sin s ]

i

¢ small longitudinal omcillations frequency

5 Q-I,('if) . Ag the small longitudinal
#cillation Trequency depends on R |, the os-
1l1lations of particle groups with different
plitudes of the transversal oscillations

are noncoherent. The two effects - the nonli-
nearity of the melf-focusing forces and the
longitndinal oscillationa dependence on the
transversal onea lead to a relatively faat
£illing of effective pheee volume on the lon-
gitudinal co=ordinstes plane with the repre-
senting pointe of the beam, which had at Ffirat
the zero volume.

The center and the saddle co~ordinates may
be defined from the equation

ces (9+ ¥) = cosps /12 (555

For the center co=ordinate 4% we have

S T P
‘H=[i' Tikek —J“ §¥Ps

NG
The center co-ordinete remains a small velue
for particlee with any poasible amplitude of
the transversal oscillations. Heally the value
of the equilibrium phase at the injection in
the accelerator with the space-~uniform focu~
8ing is usually chosen near to 90° and
fetgws| & 1; later on the difference Il-4
rapidly decreases as with energy growth of
the particles the argument of the Beesel fun-
ction decreases. The detsiled eatimations ¥
show that the phase stebllity region of the
outlying particles becomes a little wider and
alightly moved to the positive phases side in
comparison with the particles moving along
the exiaz. The difference of the movement inva-
riables for axial and outlying partieles with
low energies and high absolute values of tha
equilibrium phaee ig unessentisl, As far as
the particle energy increases the movement
invariables draw nearer even under decreasing
of the abaglute value of the equilibrium
phage, Later on while anelyaing the bunches
movement let ua conaider all the particles to
be axial and J,(k%sl.

The longitudinal movement of the particles
in the accelerator with space-uniform focusing
under conatant equilibrium phase does not
differ of the lonpitudinal movement in other
ayatems wliih paralleled accelerating gepa.
Energy increase of the equilibrium particle

along the acceleration periocd 4 -é A ie
conetant:
Awsr_'e,uLTcm(f's
The rate of acceleration decreases adimbati-
tally as the particles energy rise?
M 2o () (e S
dz B dZ b\ Wo

The phaase oscillations are stable under the
auch index. The amplitude of the small phase
ogcillatione dec¢reages plower than in an
Alvarez type accelerator and the amplitude o?

the particles momentum faster: PeWy ,‘—A;'-'W;

The length of the resonmtor £ to accelerate
particles from the energy W, to the finsal
energy Wy may be eotimated by the expression

po iz Mo[(}’_g 3 (i)”z} £omma
I SR [ £, ) o
The use of the Biructure with the space-~
uniform focusing givea possibilities to dec=-
reade the injection energy and to incresse
the intensity of the accelerated beam, The
acceleration period £pX , equal to the half
of the electrodes modulation peried, may ba
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rather short, This allows to begin accelera-
ticn from low energies, From the equation {10)
it followa that the guadrupols focuaing in
apace=uniform system does not depend of the
particle phase and if the epecific accelera-
tion is emall enough the frequencies of the
traneversal cacillations have weak coupling
with phases of the particles. By the fixed
depth of the electrodes modulastion the par—
tial incremse of the energy im constant. Then
the margine of the acceleration per length
unit ig under the low enrgies relatively
large. This allows to have the equilibrium
phage near to 90% at the beginning of the ac-
celerator., The bunches follew clome to each
other and the mean current is almost equal to
the pesk one. In this system it im possible
such adiabatic changing of the parameters
along the accelerator axis with the energy
rise, when the distance between the bunches
inerensen, but the peometrical dimensions of
the bunches under this process remain constant
and therefore the density of the space charge
remainsg constant also., These features of the
aystem with space-uniform focusing allow to
get high currents under low injection energy¥,
The Hamiltonian (18) ip not the invarimble
of the motion, becouse the parameters T, ¢,
ky are the functions of the dimtance, Never—
theless the curves H=wnst apre the phase tra-
jectories under adiabatic approximaticn.
These trajectories are changing their forme
slowly, the area anveloped by the cleosed tra-
Jectory being constant. Let ue sssume the
conditions of the accelarator parameters
changing along the axis to ensure the cong-
tancy of the bunches length and conservetion
of the charge density dietribution aslong the
whole length of the bunch. Simultaneously we
shall proceed from the assumption that the
whole ares enveloped by the separatrix ias
fully filled by particles after injection.
The phase trajectory of the small oscilla-
tione ia described by the ellipmis equation

2 2z
B dimt

where EL=I22. According to the theorem of
the adiabatic invriable PZ = const. It is
clear from this that the condition Q= conat
or

Tsin 1ps
A

engures the conservation of all the phase
trajectories with linear approximation. On
that score this guarantees the conservation
of the charpe density distribution in the 1i-
near region inmide the separatrix. Let then
P. to be the phase longitude of the separa—
trix. The velue 9. iz connected with the
equilibrium phase by the equation ¥

'&, ?:-—Si'fl«?c,

The graph of ® as a function of the equilibw
rium phage for the whole length of the inter—
val from zerc to-~%2 ie shown in Fig,5, The
geometrical length of the mepsratrix is

Zo= 2P, |

If one decreasea the eguilibrium phase along
3466

= caonat

the accelerator axiz in such a way that the
value 5% will remain constant,the lengtp ot
the bunch will net change, The half of {he
vertical dimension of the separatrix depengg
on the length of the separatrix aa

P = 2aZ. %),
The funection
Y

3 ()= 1%: 1- ?;]E

is shown in Fig.5. If f1= const and Elnconat
then the verticel dimension of the meparatriy
is algc almoat congtant. In particular, if

one puts =3, fy,= estd 92 the consataney

of R is quite strict: %,=i/83. At the big va-
luee of the equilibrium phase, up to ¢ = -1,
the function ¥ deviation of the pointed ya.'
lue does not exeed 5%. So the constant chargs
density distribution remaina along the whole
length of the bunch with practically enough
sccuracy. The conditions of the quasi-atatig.
narity it = const, Z.= conet simple defina
the dependence of the acceleration effective-
ness and the equilibrium phese on the current
energy of an equilibrium particle Wsg . Thege
paramétera are connected with the final velyuss
of Ty, ¢ + Wy by the expreasicns

Wy (W, sS4 s
)=o)\t 5 TR =TS
The acceleration rate in the structure with
guaBi-atationary bunches is defined by the
equationw o
A dWs 2 (ONT
We )_z_'_z(m) T2 (45), (21)
where F,(¢) = ?c(ps}/HgtpsLThe funetion F,
plot 1a shown in Fig.5; tha function F, may

be represented by the m‘;n:'ies"r P ¥ pacl
2
_3._.;14.0_3(&)4-0_09“(3))( o.029( %)+, |flox
T 3 3 a £
2 feci
The length of the accelerating resonator with Erem:
quasi-atationary bunches may be found integ- But
rating the equation (21), Let um note that Tn «
the resonator is relatively short in spite of f eecl
very small acceleration rate at the beginning, ¢ dime
aa the partial energy increase grows fast due Toct
to the growth of the acceleration effective= whez
neses. The
If to take into account the expression (/%) rep:
(11), the equation {10) may be represented as
Z 2 ' a.
£ (@ [Koswt - % 5ne[x=0 ) | %
d¢? ~ whe:
The first term in the sgquare brackets definea i
the effect of the space~uniform guadrupcle 9
focuging, Am 1t was noted eerlier, in contrast |
to the HF fecusing in the epace-perioedical lfThe
atructures, in thia case the focusing term ' dBo
does not depend of the perticle phase. The B fun
aramneter ’
7 2. el (D) ,
= Yme? L& (23 The
determines the stiffness of the focusing the
channel. The defocusing faclor % may be
wriftten aa i T
Yoo EE G (24)
e ™ 2Ws
The defocusing factor is not zerc at those
cased when the distance between the electro-
dea ip modulated (T ¥ 0) and the effect of
1



.3 constant, In particular, if

. of the acceleration effecti

gt simp]x=o (f'

s 8X1s in such a way that the
1, remgin constant,the length The limite of Fioat
.2 not change. The half of the . e
:zaion of the separatrix dependglggeion of the stable solutions under K <T

1 of the seperatrix as ?’*‘. th e:gugh accuracy may be defined by the
— z g 3’ ( : I pPINeHB L Oong ; 2 r{g* .
20 2, 1 (PS) Kq)__mq_x‘,SIntPj K < = XQSH'L‘P (25)

e enelysie of the expressionz (25) shows
at the atability of the transversal 08cil~

1‘4"‘ i{ations may be realimed under any valueg of
%:.5. Tf f2m const and Z wcongt}f® ullibrium phase up to -90° . Practical-

T i 34y the only firgt expression (25) 1s sssen-
;sral dimension of the separair fisl. It leads to the condition

celeration takes place.
the Mathieu equation,

The equation (22)

s

i~

T %, {;’%= ‘fs‘*i {&3 the constane é ell; M (__a___)’(
o atriet: =1, At the big Vagy Ws E p?\

sguilibrium phase, up to g = -1
¥ deviation of the pointed va-
exeed 5%, So the constant charg§ oscillations (pood .
"ibution remaine along the wholel™ 2z
1 punch with practically enough The averaged fraquency of the trangveraal
* conditions of the quasi-staticjppcillations u=2n 04 /5  under the smooth
wmat, Z.c conat aimple define gproximation is defined by

Y] B o 2 y .
equilibrium phase on the curren :}f \ 2 4 Kl 23’ sing
eguilibrium particie WF »_ Theme| A Tz o P
»x connected with the final wvael br the equilibrium particle

oriding the trensveraal atability of the
prticles under any phases of the longitudi-

¥ the expresaions W; sin qlf.i: /usaz “‘?f; l\’v- 212(_3—%
b -h-';-f-; T(Ws)"T(wf)W;Si"‘P.s .

I is clear from this expression that in the
secelerator with quasi-staticnary bunches tha
[gveraged frequency of tha transversal oscil-
flations is conatant if &/f% aconst.

1ary bunchee is defined by the
2 . ? -
B £ * A ._The pericdical coefficient of the equation
. (w) 2 (‘Ps) ? (2H22) ig ag expéicit fu:a{l:tion of the time and
; function does not depend on the longitudinsl co-ordie
- Pc(lPS)/?‘i:;l'T:e 1:1.10 5, gamta. The Floquet function ¢ (¢) also does not
1 in Fig' H & unetion 2 !

h Wtepend on the longitudinal co-ordinate, This
i by the :3:91-1:3&:"r PrE jpeuliarity of the solution is distinctive
2 i} ar accelerator with gpace-uniform Focue
%ﬁ)+o,ogw(§5)+ 0,029 (‘5")"’ :
iact that the dimensione of %he matched beamn
lerating resonator wiigmain constant along the axis of the channel.
., DRaene e the beam dimensions are pulesting in tims.
y=tion (21). Let us note that Y "
- -3 relatively short in spite d¥fctions of the beam reach their mA X mun
:c leration rate at the beginn mengions at the momenie when the channel ig
& uging in thie plane and minimum dimension
1.¢ P the acceleration effectiveqd®™n the channel is defocusing in the plane,
Flequet ellipmis in the
Preaented by the equation

lwa rate in the atructure with

iing, Really this peculiarity comes to the
F hes may be found integdW
i . i every of the X0Z or YOZ planes the croma
11 anergy increase grows fast 4

1. x X .
s .nto account the expression plane ) e

1 lon (10} may be represented g+ 2
2 dx dx _ ¢
a,x +€,(d—{_— +,<?c‘,x;%"—~7v3 y

2 2 divl
m in the mguare brackete definff _ 1 divlye = oo W e S
.:mtl'nle.a1 Bpacegu.nifom quedrupole W, [pl2 +Wy d¢ )J é Wf,f'Pf i Ce ““d‘“"

it was noted earlier, in contril, . l8;: W -normalized emittance of the beam.
::#ing in the apace—pericdical :

-:'3 instanteniocus value of the transversal
42 this case the focusing term f ; the Ploguet
tna of the particle phase, The ¥

A\2 _1
CL J{gu"; (E- {2 b We W I“P(f”z'
RLLCS . §.8 matched beam envelope is proportional to
- gtiff;:essfogt;clrle Ogg EE Bie Floquet function medulus
L_focusing fa o
. C
el T L ROl W,
W (24
s

& factor is not zero at those
te digtance betwsen the electrod .
v d (T ¢ 0} and the effect of

80 the normalized acceptence of the channel
will be defined by the well known expression

V‘J‘- = 4{‘1 wt,,“‘" az

The Pig.6 gives the depen%ﬁnce of the

indimensional value zj Yt s,  on the

channel parameters K~ and Ys=-Xosin¥% . The
coeffleienta of the Floquet ellipaiam aquation
at any point of the channel including the
output of the accelerator are the beriodicel
function of time with the peried L

The accelerator with space-uniform focu~
a8ing does not require a high-voltege injector,
gives possibility to have a high coefficient
of capture of particles inta acceleration
conditions without inereasing of phase density
in transversal phsse space and has wide
acceptance. But such an accelerator ism effec=
tive only for energies not more thap 2 =1
KeV/nucleon ag there is no possibilitles o
get a high acceleration rate under big
velocitles of particles, That isg why the
accelerators with apace—uniform Tocusing are
effective ag an initial part of the linear
accelarator for high energiea and big inten-
gitiea, Several projectas with space~uniform
focusing structures as en initial part of
high-current linear accelerators wore

pro poaad?'g
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224 — TRANSVERSE PARTICLE DYNAMICS

period G to calculate oy for the quadrupoles alone (as if E,7 = 0).
(b) Calculate oy when £47 = 1 MV/m and ¢ = —30°. Are the particles
stable transversely? (c) For the same —30° phase and the same quadrupole

array, what is the maximum accelerating field Eo7 for transverse
stability?






