NUCLEAR EXPERIMENTAL TECHNIQUES

LINEAR ION ACCELERATOR WITH SPATIALLY
HOMOGENEOUS STRONG FOCUSING

I. M. Kapchinskii and V. A. Teplyakoy UDC 621.384,

A linear ion accelerator is suggested, in which focusing and acceleration is accomplished by means
of a h~f electric field generated by a long line of four conducting wires. The accelerator contains
no drift tubes. The advantages of this accelerator are its relative simple design, the small transverse
dimensions, and the possibility of an essential reduction of injection energy without influencing the
high intensity of the accelerated beam.

In linear accelerators with drift tubes the swong-focusing system displays spatial perlodicity: either the po-.
larity of the quadrupole-lens poles or the geometry of these poles is altemnated along the axis. When operating with
alternating yoltage a quadrupole system of focusing electrodes can be used which is homogeneous along the accel~
erator axis (Fig. 1). A high-frequency voltage (+V/2) cos (wt + ¢) 1s applied t0 the electrodes, and the particles
moving along the axis are exposed successively to the action of fields with alternating signs of the gradient. This
resules in the appearance of a strong-focusing effect in the spatially homogeneous quadrupole system. '

In the high-frequency focusing field a longitudinal accelerating component can be produced if the distance -
between the opposite electrodes of Hke polarity is changed periodically along the axis. The spatial period of varia
tion of electrode distance must be equal to the path traveled by the particle within a high-frequency period, while
the phase of distance variation in the vertical and horizontal planes must be shifted by half a period. The potentiak
of the axial electric field is then modulated with the period BX,which gives rise t0 a resonance acceleration effect.
Figure 2 shows schematically a cross section of the electrodes at y = 0 and X = 0; 2 is the longitudinal coordinate
and k is the wave number: k= 27/8x.

Let us consider a four-conductor quadrupole line. In a quasisteady approximatior the potential dustribution
of the electric field generally has the form

wlr, P, z,8) = —3V [Folr,¥v) + Z F, {r,¥)sinknz] cos(wi -+ @).
=]

The function

Fo(r, )= > Agr2@etlcos2 (254 1)

=9

determines the potential in cross sections with the coordinate kz = In (1 = 0, 1, 2, ...}, where the distribution has
an exact quadrupole symmetry, With good accuracy this function describes the form of the electrodes in these
cross sections. In the case of harmonic spatial modulation of the electrode distances, the coefficients Fy aregivenby
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Fig. 2. Electrode cross sectionsof ortho-
Fig. 3. Four~conductor long line with quadru- gonal planes through the longitudinal
’ polar symmetry. axis of the accelerator.

i Fo(r,¥)= Z. A Tog(knr) cos 2sP.

§==0

Along a path equal to the period of spatial modulation Az = B\ the particle energy grows by

oo fr
AW == 1], ekV 2. n S Fo(r,¥)cosknz cos (kz + ¢)dz.
n==l o

For particles moving along the accelerator axis

AW = 2eVacos g,

where ¢ is the phase of the field (referred to the maximum) at the moment of time when the particles are at a
point corresponding to a cross section with exact quadrupolar symmetry; © is the efficiency of acceleration

8 = Y mA,,. @)
In a first approximation only the first harmonic of the spatial modulation of the electrodes contributes to the
acceleration.
Let us introduce a nondimensional longitudinal coordinate
T = (0t + @)/2m.
Transverse vibrations of the ions in the nonrelativistic case can then be described by
oo
f;—r-f = (2%2:1) [%‘29 cos 2nt + gl%sm n(2nt — @)cos 2551.'] . 3)

Considering the linear approximation we restrict ourselves to the quadrupolar component of the field and the first

harmonic of the spatial modulation of the electrodes. Bearing in mind that the main contribution to acceleration
is made by the term with the coefficient A3y, we Obtain

Fy(r,¥) = Agor® cos 29
Fy(r,$) = Ayelo(hr) (4)
F.(r,9)=0;n2>2




Let us denote by a the minimum distance from the electrode to the axis, which determines the acceptance of the
channel. When the distance between ihe electrodes is not modulated, the radius of the channel will be equal to a
at any point of the axis, while with perfect hyperbolic poles the gradient of the electric field is

Gy = Via*

In the presence of modulation the electric field gradient on the channel axis in cross sections with exact quadru-
polar symmetry, is given by

G - 8Ex/c'3x == Vfioo.

We call G/G, the focusing efficiency (u). It is easy to see that

§ = A a®,
¥ e (5)

The equation of transverse oscillation (8) can then be written in the form

%:[%%(%)zcosznt—gﬂBsmcp] ©

where gy, in eV, is the rest energy of an fon. The advance of the phase of transverse oscillations in the period 3
(or Ar =1), in a continuous approximation, is given by the equatdion

o 1 [aFAR e 211:1/' .
[ m—g—(Tany) }«BE sing. (n

The first term on the right-hand side of Eq. (7) is determined by the effect of strong focusing. The second term is
nonzero if the electrode distance is modulated (6 = 0); this term is connected with the defocusing action of the
field which accompanies the effect of acceleration.

The Mathieu functions are sokitions to Eq. (8). The transverse oscillations of a particle with phase ¢ arve
stable if the following conditions [1] are satisfied:

zn“F ( ) <1 - Bsm(p

WV 20 sm cp

)
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An analysis of the inequalities (8) shows that in practice the transverse oscillatjons are stable with any values of
the synchronous phase {up to -~90°), just as in accelerators with static lenses.

Restricting ourselves in the potential distdbution function (1) to first~order terms of approximation {4}, which
determine essentially the effects of acceleration and focusing, we obtain

2 40 R
wlr W, 2, ) = — Y,V [v«: (£) cos 29 + — Lo{kr)sin kz:! cos (wt -}- g). 9
Solution (9) is exact if the pole surfaces satisfy the equations

208 2 = &1 — 2 7, (or) sinkz
r?cos 29 { o (for) ] @)

ricos 2 = — [ﬁ —1—{@ o(kr)sinkz].

The depth of spatial modulation of the electrodes can be given by means of a coefficient, m, which is equal to

the ratio of maximuin éistance between electrode and axis to the minlmurmn distance (Fig. 2). The efficiencies of
acceleration and focusing for perfect poles are determined from Eq. {10} in terms of the channel aperture ¢ and the
electrode modulation depth m:
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In the general case the efficlencies of acceleration and focus-
ing must be determined from Eqs. (8) and (5).

With constant channel aperture the acceleration effi-
ciency increases and the focusing efficiency decreases as the
modulation depih is raised within wide limits; thus there
exists an optimum modulation of electrode distance, Nu-
merical estimates show that the mean incremeni of proton
energy per unit lengih in the systein considered is equal to
about 1 MeV/m, and the normalized acceptance is about
1.5 cm mrad up to enesgles of 2030 MeV, with a maximum
h-f field strength of up to 250 kV/cm. Fields with such
strengths are used in modern accelerators. Owing to the
spatial continuity of the focusing and accelerating structures
the latter can be used effectively at low injection energies
of 100-200 keV, where the mean increment of energy per
unit length increases essentially in the range of low energies.

Fig. 3. Distribution of electric field in
the cross section of the four-chamber
resonatos.

Pales as described by Eqs. (10) are in all cross sections
close to the form of the hyperbolic poles, and the square
electrode distances to the axis vary according to a sinusoidal
law. In order to produce sufficiently high potential differ-
ences between neighboring poles, the laiter must be cut off
as in common electrostatic lenses, This results in an in~
- crease of the nonlinear field components but does not in-
Fig. 4, Cross sections of four-chamber resona- fluence the acceleration efficiency. Since ir all static

tor with modulated electrodes. lenses, poles with limited generatrices are used, the appear-
ance of nonlinear effects is not specific for spatially homo-
geneous structures.

The behavior of a beam in a spatially homogeneous hardfocusing channel possesses characteristic peculiarites.

An adjusted beamn has dimensions which are constant along the channel axis but periodic functions of time. In each
of the planes {y = 0 or z = 9} the maximum cross-sectional dimension is reached at the instant of time at which the
channel focuses in the plane considered, and the minimum dimension is reached when the channel defocuses in this
plane. The conditions for an agreement of the beam with the channel inlet vary periodically with the frequency of
the electric field. It is therefore necessary to adjust the beam dynamically with the channel. This adjustment is
achieved with the help of high-frequency quadrupole lenses. The envelope of the nonadjusted beam is a periodic
function of tirne, oscillating with twice the mean frequency of the transverse osciliations of particles; these oscilla-
tions are superimposed by the high-frequency oscillations of the field. The amplitude of the "slow” oscillations
runs along the beam with the velocity of the particles.

The high~frequency four-conducter line can be constructed as a four-section cylindrical resonator. All sec-
tions (chambers) of the resonator are excited to the lowest natural frequency such thai the magnetic field vector is
directed along the resonator; in the neighboring chambers it is in antiphase. The maximum high-frequency poten-
tial difference appears in the partition gap between the chambers, near the axis, Along the resonator the potential
difference is constant at every instant of time. The field distribution in a resonator with nontnodulated electrodes
is shown in Fig. 3. Figure 4 shows a cross section through a resonator with modulated electrodes in planes corre-
sponding to the coordinates kz = 7 /2 = 27! and kz = 35/2 = 2¢1. The magnetic flux is closed at the ends of the
resonator. On its ends the resonator is closed by plane bottom plates which do not touch the partition sections be~
tween the chambers.

The natural frequencies of a fowr-chamber resonator with nonmodulated wedge-shaped electrodes are deter~
mined by the equation

F(@bfe) = — (£) (p+ In (2b/a)],

S

R

R




where ¢ is the velocity of light, b is the radius of the resonator, and a is the radius of the interaction zone (Fig. 3%

the parameter p depends on the angular dimension ot of the chamber and for the quadrupole mode of the field it is
equal to

p = 4sinfo/no — ;

while for the dipole mode it is given by

& .o f . o o .
wsmz\\smz—{—cosz—)—y,
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» = 0.5772... is Euler's constant. The function f(x} is given by

F ) = Ny2)J; (z) — (2/m) In =,

where J; and Nj are first-order Bessel and Neumann functions, respectively. Estimates show that for the quadmpole '
mode of the field the natural frequency of the resonator depends chiefly on its radius and slightly also on the para-
meters ¢ and o, For waves of A * 2 m we obtain b =~ 25 cm. The natural frequency of the dipole mode is essen-
tially different from that of the quadrupole mode.

The quality of a four-chamber H resonator is much Iower than that of cylindrical resonators excited on the
Epp wave. Because of the small reserve of high-frequency energy in the resonator volume, however, the pulse losses
of h~f power do not exceed the usual values for E resonators loaded by drift tubes. On the other hand, the low q'u'é.lity
of the resonator permits a considerable abbreviation of the h-f pulse width and also of the mean power losses, " An
acceleration of long and intense beams requires a compensation of the h-f energy losses. :
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