

International Design Study of the Neutrino Factory

IDS-NF Plenary Meeting 1

Date: 16th and 17th January 2008

The Rutherford Appleton Laboratory, Chilton, Didcot, Oxon, OX11 0QX

Second bulletin

1. General information

The first plenary meeting of the International Design Study for the Neutrino Factory (IDS-NF) will be held on the 16th and 17th January 2008 at the Rutherford Appleton Laboratory. The aims of the meeting are:

- To review the baseline for the Neutrino Factory accelerator complex and neutrino detector systems derived through the ISS;
- To agree the baseline specification for accelerator complex and detectors to serve as the starting point of the IDS-NF; and
- To agree the programme of work for the study for the period up to the NuFact08 workshop.

The meeting will be a working meeting, most of the time being devoted to plenary or parallel, working-group, discussion.

2. Topics

The detailed agenda will be developed by the working-group conveners and posted shortly. The issues that will to be addressed at the meeting include:

- Accelerator:
 - Possible modifications to ISS baseline, including:
 - Proton driver capable of 50 Hz, single-bunch operation;
 - Design for a 25 GeV storage ring.
 - Impact of results from target proof-of-principle and particle-production experiments on the ISS/IDS-NF baseline. In particular:
 - The impact of the MERIT results on the specification of the bunch spacing in the proton driver;
 - The impact of the HARP results on the capture system;
 - Plans for completing designs for the baseline systems:
 - Proton driver;
 - Acceleration system:
 - a. Linac, including transport/matching of beam from the cooling channel;
 - b. Full, linear design of the RLAs, including:

- i. Chromatic correction, including sextupoles, etc.;
- ii. Physical layout: switchyard, dogbone arc crossings.
- c. FFAG.
- Design of transport lines, injection/extraction systems, etc.;
- Tracking through individual systems and end-to-end simulation;
- Engineering for some of the subsystems:
 - Target infrastructure;
 - Baseline capture and cooling systems.
- Detector:
 - Review of baseline detector configuration:
 - Impact of the detector at the magic baseline;
 - Implementation of a full simulation of the baseline (MIND) detector in the oscillation analysis;
 - Consideration of the effect of the difference in neutrino beam properties between the near and far detectors.
 - Evaluation the systematic uncertainties for MIND. Present assumptions are: uncertainty on the signal detection efficiency 2.5%, independent of energy; and uncertainty on background contribution 20%, independent of energy;
 - Evaluation of the baseline specification for the silver- and platinum-channel detectors;
 - Impact of the individual systematic errors on the physics reach and measurement precision.
 - Consideration of options beyond the present baseline, for example the low-energy Neutrino Factory;
 - Systematic errors related to cross-section measurements and determination of electron (anti)neutrino cross-sections for CP-violation and matter-effect measurements;
 - Extrapolation of cross section measurements to energies of interest at the Neutrino Factory;
 - Impact of the measurements that will be made by Minerva, SciBooNE etc.;
 - Implementation of full covariance matrix for atmospheric and solar parameters.
- Physics and performance evaluation:
 - Provide sensitivity estimates and evaluate measurement precision of various options as requested;
 - Track new developments (beyond the current baseline) such as the low energy Neutrino Factory;
 - Understand the optimisation of the facility in the context of non-standard physics;
 - Establish a physics case for precision measurements of neutrino oscillations for all values of θ_{13} ;
 - Keep track of competitors to the Neutrino Factory
 - Study the near detector, both at a super-beam and the Neutrino Factory

- Review the status of cross-section calculations and parameterisations of the data;
- Review the status and impact of muon physics at the Neuitrino Factory.

3. Registration

Please register via the IDS-NF WWW page at:

http://www.hep.ph.ic.ac.uk/ids/communication/RAL-2008-01-16/index.html

4. Accommodation

A block of rooms has been booked at Ridgeway House (<u>http://www.scitech.ac.uk/About/Find/Ridge/Introduction.aspx</u>). The rooms will be allocated on a first-come first served basis. To make a booking please email <u>ridgewayhouse@rl.ac.uk</u> (or, alternatively <u>accommodation@rl.ac.uk</u>). Please ask for one of the rooms booked for the IDS-NF workshop.

5. Correspondence

All correspondence concerning the workshop should be addressed to:

Piera Brambilla, IDS-NF

High Energy Physics Group Blackett Laboratory, Department of Physics Imperial College Exhibition Road **LONDON SW7 2AZ** Tel: +44(0)20 7594 7824 FAX: +44(0)20 7823 8830 Email: <u>p.brambilla@ic.ac.uk</u>